
1

BSc Computer Science

Contents Page

Section 1: Basic Data

Section 2: Educational Aims of the Programme

Section 3 Learning Outcomes of the Programme

Section 4 Programme Structure Diagram

Section 5 Entry Requirements

Section 6 Assessment Regulations

Section 7 Student Learning: Distinctive Features and Support

2

Programme Specification

Section 1: Basic Data

Awarding institution/body UWE

Teaching institution UWE

Faculty responsible for programme Computing, Engineering and Mathematical
Sciences

Programme accredited by N/A

Highest award title BSc (Hons) Computer Science

Default award title BSc Computer Science

Interim award title Dip HE Computer Science
Cert HE Computer Science

Modular Scheme title (if different) MAR

UCAS code (or other coding system if
relevant)

G400

Relevant QAA subject benchmarking group(s) Computing

On-going/valid until* (*delete as
appropriate/insert end date)

Valid from (insert date if appropriate) September 2003

Authorised by… Date:…

Version Code

For coding purposes, a numerical sequence (1, 2, 3 etc.) should be used for successive programme specifications where 2
replaces 1, and where there are no concurrent specifications. A sequential decimal numbering (1.1; 1.2, 2.1; 2.2 etc) should be
used where there are different and concurrent programme specifications

3

Section 2: Educational Aims of the Programme

The BSc in Computer Science has the following general aims:

1. To prepare students for entry into the computing profession and the more general challenges of
professional and personal life.

2. To inculcate in students problem-solving and other transferable skills that will be valuable to them
in any career.

3. To prepare students for progression to study for higher degrees in Computer Science.

4. To continue the development of those general study skills that will enable students to become
independent, lifelong learners.

The BSc in Computer Science has the following specific aims:

1. To provide a coherent and broad based coverage of the theory of computer science and its
application to practical problems.

2. To enable students to appreciate the problems that can arise in computer science and to provide
them with the appropriate skills to select and apply appropriate methods and technologies to
solve them.

3. To encourage students to uphold professional, ethical and social standards and to keep up to
date with recent technological and theoretical developments.

4. To provide exposure to the body of research that underlies the use of computers and to develop
familiarity with some major themes within it.

5. To enable a student to work in any area deemed to be the subject of research into computer
science, such as AI, expert systems, machine intelligence, compiler design.

6. To develop the students’ understanding of the importance of solving complex ill-defined problems
in any domain, though with particular reference to the development of software.

Section 3: Learning Outcomes of the Programme

The award route provides opportunities for students to develop and demonstrate knowledge and
understanding, qualities, skills and other attributes in the following areas: …

5

A. Knowledge and Understanding

Knowledge and Understanding of: Teaching/Learning Methods and Strategies Assessment
1. Object-oriented programming language

concepts; other programming paradigms;
syntax and semantics; top-down development;
programming to satisfy designs.

2. Program design concepts, methods, and
notations; object-oriented design and other
design paradigms; algorithms; design patterns.

3. Databases; logical and physical database
design; database query languages.

4. The concepts underpinning distributed
systems and networks.

5. The concepts underpinning World-Wide Web
technology and web-based application
development.

6. Design and analysis of a variety of classes of
algorithms.

7. The architecture and main components of
computers.

8. A range of software development methods,
e.g.: OOA, OOD, and OOP; and structured
methods.

9. Discrete mathematics, propositional logic, and
predicate logic.

10. Professional, ethical, and social values
11. The commercial context of software

development
12. Formal systems: syntax, semantics, and

translation between formal systems
13. Artificial intelligence concepts, notations, and

Methods: including declarative languages,
Deduction, and neural nets

The award is designed to introduce both the main
concepts and topics of computer science, such as
the design and analysis of algorithms and AI, and
the knowledge and understanding necessary to
engage, from the beginning, in appreciating and
tackling computer-science problems.

Students are introduced at each level to modules
that develop a gradually increasing appreciation of
the main concepts of computer science (6, 12, 13)
At level-1, the context in which these issues reside
is introduced, but the in-depth understanding of
large, complex, problems essentially starts with
level-2 study and then continues into level-3

At level 1, knowledge and understanding of topics
1, 2, 5 and 6 (object-oriented programming
language concepts; program design concepts;
concepts underpinning world-wide-web
technology; design and analysis of algorithms) is
introduced on modules which explore the general
concepts, components and issues, positioning
them in the computing environment. The general
understanding of topics 1, 2 and 6 is built on with
more in-depth knowledge and specific
understanding of application at higher levels.

Topic 7, “The architecture and main components
of computers.” is taught only at level 1 providing,
for this award, fundamental technical knowledge
and understanding.

Most of the knowledge and understanding
outcomes are assessed by examination (1, 2, 3, 4,
5, 6, 8, 9, 12 and 13).

In addition, a variety of other assessment
instruments are used to assess these outcomes,
including the following:

• Individual assignment project (2, 3, 4, 5, 8
and 13)

• Group assignment project (5)
• Extended individual project (1, 2, and 8)
• Tutor appraisal (1, 2, 5 and 8)
• In class test (7 and 9)
• Critical review (1, 2, and 8)
• Essay (10)
• Presentation (10)
• Portfolio of practical work (12)

6

Knowledge and Understanding of: Teaching/Learning Methods and Strategies Assessment
At level-2 the knowledge and understanding of
computing continues with an expansion into
broader and larger issues, such as, the design of,
and methods of building large software systems.
The complexity and design of such systems is
addressed in all level-2 modules. Moreover, in-
depth knowledge and understanding of topics 2-4
(Program design concepts; Databases; Concepts
underpinning distributed systems and networks.) is
delivered in these modules. At level-2, knowledge
of topic 1 is assumed but will be consolidated by
constant review and usage.

At level-3 students are able to obtain in-depth
knowledge in a number of computing areas of their
own choosing.

On all modules, at all levels, the learner is
encouraged to undertake independent reading
both to supplement and consolidate what is being
taught/learnt and to broaden their individual
knowledge of the subject.

7

B. Intellectual Skills

Intellectual Skills Teaching/Learning Methods and Strategies Assessment

1. Critical Thinking
2. Analysis
3. Synthesis of different types of information
4. Evaluation
5. Problem Solving
6. Appreciate problem contexts
7. Balance conflicting objectives
8. Construction of logical arguments
9. Discussion and debate about technical

subjects with peers

At all levels students are required to bring together
knowledge and skills acquired in several modules
and hence determine new ways of working. As the
student progresses, the need to synthesise (3)
ever-greater volumes of information and
approaches into a coherent approach is developed
and consequently so is their critical thinking (1) as
well as their ability to discuss and debate technical
subjects with peers (9).

At level-1 Analysis (2), Evaluation (4) and Problem
Solving (5) are developed on small-scale problems
in various programming activities in a number of
modules. Here the focus is on understanding the
problem and then solving it free from the
environmental implications of real-world problems
and without the need to examine alternatives and
to balance conflicting goals.

At level-2 there is a move away from small-scale
problems to the design of larger scale systems.
With this comes the need to evaluate (4)
alternative methods and designs and to balance
conflicting objectives (7).

Level-3 sees the move to specific application
examples and with it the need to appreciate
problem contexts (6) is developed as well as
striking the right balance when facing conflicting
objectives (7). The skill of constructing a logical
argument is inculcated in students in part when
they develop cases to support decisions they have
made to resolve conflicting objectives (8).

Programming of complex software requires
demonstration of all of the intellectual skills. At
level-1 the focus in programming coursework
assessment, undertaken in a number of modules,
is on the skills of Analysis (2), Evaluation (4) and
Problem Solving (5). At level-2 and level-3 this
branches out to include all the remaining skills.
Many of the coursework assessments and exam
papers include elements of programming work.

Independent reading is used to enable students to
focus on their own areas of interest and, in the
process, subsequent reports, essays, and
examinations allow skills 1 – 4 to be assessed.

Design-work, even when not implemented in a
programming language, requires demonstration of
skills 1, 2, 5, 6, 7 and a number of coursework
assessments and exam questions are devoted to
such work.

Many of the assignments and the individual project
require students to express logical arguments, 8.

Finally, all of the examinations assess skills 1-4
whist skills 5-7 are covered in many exams.

8

C. Subject, Professional and Practical Skills

Subject/Professional/Practical Skills Teaching/Learning Methods and Strategies Assessment

Students will be able to:

1. Write programs that conform to designs
2. Create high-level and low-level designs that

correspond to stated requirements
3. Design, build, and deploy databases to meet

application requirements
4. Perform adequate tests on programs
5. Elicit and express requirements for software

systems
6. Build web-based systems
7. Employ a range of tools and notations to

support the activities listed here: e.g. editors
compliers, design workbenches, HTML, CGI,
Java, etc.

8. Design and build language translators
9. Design algorithms using standard techniques;

evaluate and compare algorithms with regard
to domain problems; use mathematical
techniques to analyse algorithm complexity;
apply algorithms appropriately to real-world
tasks

Throughout the program, the skills listed are
developed through a combination of the following
devices:

• Theoretical discussion
• Practical laboratory-based work
• Classroom-based tutorial exercises
• Directed self-study

Many of the skills listed are introduced at level-1
and then drawn into sharper focus at level-2, and
deepened at level-3. The general
teaching/learning method is to impart these
practical/professional skills by a process of moving
from an overview of what is required to a specific
application of an individual skill at a higher level.

The two main forms of assessment of the subject,
professional and practical skills are as follows:

• Extended individual project (1, 2, 4, 5, 7)
• Practical component of individual

assignment projects (1 – 9)

In addition, other assessment instruments are
used to assess some of the skills:

• Examination (1, 2, 3, 5, 8, 9)
• Portfolio of practical work (9)
• Group assignment project (5)

9

D. Transferable Skills and Other Attributes

Transferable Skills and Other Attributes Teaching/Learning Methods and Strategies Assessment

1. Communication skills: to communicate
orally or in writing.

1. Communication skills are developed through a variety of
methods and strategies including the following:
♦ Students maintain laboratory log books
♦ Students participate in electronic conferences, workshops,

and groupwork sessions.
♦ Students participate in discussion tutorials
♦ Students present research topic findings in tutorials
♦ Students participate in individual tutorials

1. Communication skills are assessed
mainly by examination, but also by in-
class tests, essays, presentations and
poster presentations.

2. The other skills are assessed through
a number of similar

2. Self-management skills: to manage one’s
own time; to meet deadlines; to work with
others.

2. Self-management skills are developed through a variety of
methods and strategies including the following:
♦ Students conduct self-managed practical work
♦ Students participate in practically-oriented tutorial

laboratory sessions
♦ Students work through practical work-sheets in teams
♦ Students practice design and programming
♦ Students participate in electronic conferencing tutorials
♦ Students participate in electronic groupworking tutorials

instruments including the following:
♦ Individual and group projects
♦ Practical assignments
♦ Portfolio of exercises
3. In addition self-management skills are
assessed by both peers and tutors.

3. IT skills in context: to use software tools in
the context of application development.

3. IT skills in context are developed through a variety of
methods and strategies including the following:
♦ Students conduct self-managed practical work
♦ Students participate in experimental investigation tutorials
♦ Students work through practical work-sheets in teams
♦ Students make use of online teaching materials
♦ Students use a range of system development tool,

methods, and packages
♦ Students are encouraged to practice programming to

extend their skills
♦ Students make sustained use of the internet

10

4. Logical reasoning skills: To undertake
analysis and interpretation of information in the
context of the Computing discipline.

4. Logical reasoning skills are developed through a variety of
methods and strategies including the following:
♦ Students develop problem-solving programs
♦ Case-Studies are used to explore design issues with

students
♦ Students practice design and programming
♦ Students sketch designs of larger systems

5. Problem formulation: To express problems in
appropriate notations.

5. Problem formulation skills are developed through a variety of
methods and strategies including the following:
♦ Students develop problem solving programs
♦ Students practice design and programming
♦ Students sketch designs of larger systems

6. Progression to independent learning: To gain
experience of, and to develop skills in, learning
independently of structured class work. For
example, to develop the ability to use on-line
facilities to further self-study.

6. Progression to independent learning is developed through a
variety of methods and strategies including the following:
♦ Students are encouraged to practice programming to

extend their skills
♦ Students develop problem-solving programs
♦ Students are encouraged to research relevant topics
♦ Students are encouraged to use the library, the internet and

other online facilities to discover information and broaden
knowledge

♦ Students are encouraged to articulate and reflect upon their
own ideas and experiences

♦ Students negotiate the content and structure of their
individual projects with tutors

7. Comprehension of professional literature: to
read and to use literature sources appropriate to
the discipline to support learning activities.

7. Comprehension of professional literature is developed
through a variety of methods and strategies including the
following:
♦ Students are encouraged to access online material
♦ Material is recommended to the students in module syllabi

and by tutors
♦ Students are required to research and refer to appropriate

literature in assignments and the individual project
8. Information access: to understand basic
techniques for structuring and thereby
accessing information.

8. Skill eight is developed through a variety of methods and
strategies including the following:
♦ Students develop a database system in laboratory sessions

11

9. Teamwork: to be able to work as a member
of a team; to be aware of the benefits and
problems which teamwork can bring.

9. Teamwork skills are developed through a variety of methods
and strategies including the following:
♦ Students may be involved in group tasks in tutorials and

when working on assignments

12

Section 4: Programme Structure

PLEASE NOTE: REFER TO THE FACULTY ON-LINE INFORMATION SYSTEM
FOR UP-TO-DATE STRUCTURE INFORMATION
http://www.cems.uwe.ac.uk/exist/index.xql

13

Section 5: Entry Requirements

The university's minimum requirements for entry to a degree will apply. In
addition entrants will be required to have:

• Mathematics at GCSE Grade C or equivalent.
• Mathematics, Computing or a Science at A2 level
• Prior knowledge of a programming language.

Section 6: Assessment Regulations

a) MAR

Section 7: Student Learning: Distinctive Features and Support

Within the Faculty of Computing Engineering and Mathematical Sciences, student learning will be
supported in the following distinctive ways:

� through provision of a large Open Access Laboratory (3P10) containing 50 machines that
provide students with access to a wide range of computer-based applications;

� through provision of nine other, frequently available, computer laboratories that provide
similar access;

� through provision of the CEMS System Support Helpdesk that provides a range of support for
learning to students including:

• support for a wide range of applications used by the students;
• help in the form of Assistants who are trained to resolve many common student problems;
• and help in the form of a large set of “Helpsheet Documents”, developed over a number of

years, that cover a variety of common student requests for information;
� in level-3 modules there is scope for engagement with current leading-edge research

undertaken by researchers within the University.

14

Section 8 Reference Points/Benchmarks

• Subject benchmarks (QAA Unit …)
• University teaching and learning policies:
• staff research projects:
• employer interaction/feedback:

The QAA Subject Benchmark Statement for Computing was published in 2000, and is applicable to
this proposal. The design team has considered it in drawing up the structure of the programme, and
is of the view that the proposal falls clearly within the scope of the benchmarks, as regards curriculum,
teaching and learning, and the benchmarking standards themselves.

The benchmarks (paragraph 2.1) identify a range of types of degrees in computing. At one extreme is
a programme that "covers a wide range of topics spanning the entire area of computing". At the other
programmes that "take one very specific aspect of computing and covers it in great depth". This
programme resides in the middle of these two extremes providing relatively detailed coverage of a
moderately broad subset of computing topics and embraces the three key ideas:

• Development of computing systems;
• Importance of specialism and position within a broader context;
• Balance between theory and practice.

The benchmarks establish a set of Principles of Course Design (paragraph 3.1). This programme,
whilst first developed prior to the writing of the benchmarks, nevertheless satisfies these design
principles and continues to be revised bearing them in mind.

The benchmarks also contain (section 5) statements of the standards expected of graduates at both
modal and threshold levels. The team is of the view that graduates of the programme will be able to
meet the required standards, and indeed have done so on earlier versions of the programme.

This specification provides a concise summary of the main features of the programme and the
learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if
he/she takes full advantage of the learning opportunities that are provided. More detailed information
on the learning outcomes, content and teaching, learning and assessment methods of individual
modules are to be found in the module specifications.

