

MODULE SPECIFICATION

Part 1: Information							
Module Title	Discrete Mathematics [TSI]						
Module Code	UFCFRW-12-1		Level	Level 4			
For implementation from	2021-	2021-22					
UWE Credit Rating	12		ECTS Credit Rating	6			
Faculty	Faculty of Environment & Technology		Field				
Department	FET	FET Dept of Computer Sci & Creative Tech					
Module Type:	Stand	Standard					
Pre-requisites		None					
Excluded Combinations		None					
Co-requisites		None					
Module Entry Requirements		None					
PSRB Requirements		None					

Part 2: Description

Educational Aims: The aim of this module is to instruct students in methods and models of computer mathematics: logical functions, logical networks, finite automaton, graph theory, flows in networks, algorithm theory, formal systems (theories). The module adopts the use of modern software such as R, Python, Mathcad to complete the practical assignments. The module provides a strong practical element giving ample opportunity to learn and practise new skills.

Outline Syllabus: Introduction to graph theory;

Non-oriented graph main characteristics. Eulerian graphs;

Trees and oriented trees. Spanning trees of the non-oriented graphs. The Kruskal's algorithm of minimal spanning tree searching;

Tree of shortest paths and its searching algorithm;

Networks and flows in the networks. Algorithm of the maximal flow and the minimal cost flow searching;

Transport problem;

Definition and representation ways of logical functions (LF). Elementary (LF) and their properties.

LF superposition;

Disjunctive and conjunctive normal forms of LF. Completeness of LF family. Post's theorem;

A problem of LF minimization. Quine - Mc Klosky algorithm for the enumeration of LF simple

STUDENT AND ACADEMIC SERVICES

implicative functions. LF minimal form searching. Covering problem;

Finite state automatons (machines);

A minimization of the numbers of states for the finite automaton;

Intuitive requirements to algorithm. Various models of the algorithms. Church thesis;

A definition and representation ways of the Turing machine, Universal Turing;

machine. The way of its construction;

Stopping and self-applicability problem;

A proof of its algorithmically non-resolvability. General algorithm theory:

Introduction to the logic. Predicates and propositions, Truth formulas;

Principles of formal systems (theories) construction, Propositional calculus;

Logic of the propositional calculus;

Predicate calculus. Logic of predicate calculus;

The formal arithmetic:

Meta-theory of the formal systems;

Teaching and Learning Methods: This module will adopt a mix of lectures and practical classes. During lectures, theoretical aspects of the course will be provided to students by the teaching staff. Lectures will be supported by presentation published and available to the students on e.tsi.lv under the module section. Also, additional materials, like publications on the internet, videos etc will be presented in e.tsi.lv.

During practical classes each student receives an individual task to perform. Each practical task should be completed and uploaded to e.tsi.lv (under specific practical task element), it will be checked by the teaching staff and feedback will be provided. Defense of the performed task is not required. The teaching staff note the task is passed or failed. If the student has not completed the tasks, then they are not allowed to pass the exam. Modern software such as R, Python or Mathcad will be used in practical classes (students' choice). As a demonstration of the idea of the algorithm studied in the current practical task, the code on the Mathcad is provided as the most formalised and similar to pseudocode.

Part 3: Assessment

This module assessment is split into two components (A – Exam, B – Practical Assignments):

A - final 3-hour examination which will assess the students understanding of taught material that forms part of the learning outcomes but cannot easily be assessed through practical tasks.

B – component will consist from multiple elements, which are practical assignments. Each assignment should be completed, and written report should be provided to the teaching staff.

Element B1: A series of practical assignments, which provides results of assignments execution. This element is worth

Element B2 – a midterm in-class written closed-book tests covering graph theory, logical functions, finite automatons and Turing machine.

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A	✓	60 %	Examination
Portfolio - Component B		4 %	A portfolio of 4 practical assignments, which provides results of assignments execution.
In-class test - Component B		36 %	midterm in-class written closed-book test on graph theory. and midterm in-class written closed-book test on logical functions, finite automatons and Turing machine.

STUDENT AND ACADEMIC SERVICES

Resit Components	Final Assessment	Element weighting	Description
Examination - Component A		60 %	Examination
Portfolio - Component B		4 %	A portfolio of practical assignments, which provides results of assignments execution.
In-class test - Component B		36 %	written closed-book test on graph theory. and written closed-book test on logical functions, finite automatons and Turing machine.

	Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the follow	owing learning	outcomes:				
	Module Learning Outcomes						
	Apply computational mathematical models and methods for solving practical problems						
	Specify graphs in different ways						
	Solve various problems in graph theory, for example, the problem of finding the shortest path, the problem of finding the maximum flow, and so on						
	Solve various problems in the theory of logical functions						
	Build a finite state machine and implement any algorithm using a Turing machine						
	Solve various problems in the theory of algorithms and formal systems						
	Use different modern software such as Mathcad, R or Python						
Contact Hours	macpenacite study flours:						
	Independent study/self-guided study 96						
	Total Independent Study Hours:	6					
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning 64						
	Total Scheduled Learning and Teaching Hours:	4					
	Hours to be allocated	20					
	Allocated Hours	16	50				
Reading List	The reading list for this module can be accessed via the following link. https://rl.talis.com/3/uwe/lists/3E565164-0661-0B67-D58F-7F3A4F8C gb&login=1		g=en-				
	<u> </u>		3				

STUDENT AND ACADEMIC SERVICES

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Computer Science and Software Development [Oct][FT][TSI][4yrs] BSc (Hons) 2020-21

Computer Science and Software Development [Oct][PT][TSI][5yrs] BSc (Hons) 2020-21 BSc (Hons) 2020-21

Computer Science and Software Development [Feb][FT][TSI][4yrs] BSc (Hons) 2020-21

Computer Science and Software Development [Feb][PT][TSI][5yrs] BSc (Hons) 2020-21 BSc (Hons) 2020-21