

MODULE SPECIFICATION

Part 1: Information						
Module Title	Computer Systems Structures [TSI]					
Module Code	UFCFCW-24-0		Level	Level 3		
For implementation from	2020-	-21				
UWE Credit Rating	24		ECTS Credit Rating	12		
Faculty	Faculty of Environment & Technology		Field	Computer Science and Creative Technologies		
Department	FET [ET Dept of Computer Sci & Creative Tech				
Module Type:	Stand	Standard				
Pre-requisites		None				
Excluded Combinations		None				
Co-requisites		None				
Module Entry Requirements		None				
PSRB Requirements		None				

Part 2: Description

Educational Aims: The main aim of the module is to provide students with information to understand design and functioning principles of computers (C) and computer systems (CS); be able to carry out the choice of C and/or CS, whose architectural features fits better to specific conditions.

Outline Syllabus: The module covers the following topic areas:

Structure of von Neumann computer, Computer arithmetic basics, Elementary Boolean functions and logical elements, Architecture of instruction commands, Computer functional organisation, Computer control units, Computer operational units, Computer internal memory, Computer external memory, Computer virtual memory, Memory protection, Computer intercommunication system, Input/output systems, Modern tendencies in computer processors architecture, Computer logical basics, Circuit technology of digital devices, Synthesis and analysis of digital devices. Parallelism as a basis of high-performance calculations, Realisation of parallelism at the level of single processor, Computer system concept. CS taxonomy, Computer systems (C) with shared and distributed memory, Topology of interconnection networks, Computer systems of SIMD class (vector, array, systolic), Computer systems of MIMD class with shared memory (SMP, PVP, NUMA), Computer systems of MIMD class of MIMD with distributed memory (MPP cluster, Constellation, transputer), Computer systems with non-standard organisation of computational process (data-flow, reduction, wavefront), Computer systems performance estimation. Teaching and Learning Methods: Learning and teaching will be provided to students in following forms: lectures, labs, tests. During lectures, theoretical aspects of the course will be provided to students by the teaching staff. Lectures will be supported by presentation published and available to the students on e.tsi.lv under the module section. Also, additional materials, like code examples, text books, publications on the internet, videos etc will be presented in e.tsi.lv. During labs, each student receives an individual task to perform.

Part 3: Assessment

This module assessment is split into two components (A – Exam, B – Labs):
A1: final 3-hour examination which will assess the students understanding of taught material that forms part of the learning outcomes but cannot easily be assessed through practical tasks.

• B1: A portfolio of practical exercises, which covers all topics of the module

B2: A series of online tests covering a range of topics covered within this module

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A	\checkmark	25 %	Exam coverage topics term 1 and 2
Portfolio - Component B		20 %	A portfolio of practical exercises, which covers all topics of the module (for term 1&2)
In-class test - Component B		55 %	A series of in-class tests, which covers all topics of the module (for term 1&2)
Resit Components	Final Assessment	Element weighting	Description
Examination - Component A		25 %	Exam coverage topics term 1 and 2
Portfolio - Component B		20 %	A portfolio of practical exercises, which covers all topics of the module (for term 1&2)
In-class test - Component B		55 %	a series of in-class tests, which covers all topics of the module (for term 1& 2)

Part 4:	Teaching a	and L	earning	Methods

Learning Outcomes	On successful completion of this module students will achieve the follow	ving learning	outcomes:			
	Module Learning Outcomes					
	Understand basic principles of von Neumann computer design and str	ucture	MO1			
	Know computer arithmetic, logical and circuitry fundamentals.					
	Understand conception of calculation performance increase due to usage of multiprocessors and multicomputer					
	Understand CS classification					
	Know about conventional and non-standard CS architectures, as well as range of their use.					
	Know and use C and CS performance estimation methods					
	Present basic tendencies in development of computer aids					
	Apply different data presentation formats and different numbering systems					
	Use the mathematical apparatus of Boolean algebra for synthesis and analysis of					
	Ose the mathematical apparatus of boolean algebra for synthesis and analysis of model combination and serial logical circuits Reasonably choose the type and characteristics of Cs and CSs as it applies to the supposed aim of their application					
	Understand the margins of borders of different Cs and CSs architectur	es	MO11			
	Be able to comprehend and expound knowledge at scientific and professional domain Be able to track tendencies and trends in development of the computing aids					
Contact Hours	Independent Study Hours:					
	Independent study/self-guided study 96					
	Total Independent Study Hours: 96					
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning	64				
	Total Scheduled Learning and Teaching Hours: 64					
	Hours to be allocated	.0				
	Allocated Hours 1					
Reading List	The reading list for this module can be accessed via the following link: https://rl.talis.com/3/uwe/lists/A1851884-C45A-1309-4633-9B981361EE gb&login=1	DE4.html?lanç	j=en-			

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Computer Science and Software Development [Oct][FT][TSI][4yrs] BSc (Hons) 2020-21 Computer Science and Software Development [Feb][FT][TSI][4yrs] BSc (Hons) 2020-21