

MODULE SPECIFICATION

Part 1: Information					
Module Title	Aeros	space Thermofluids			
Module Code	UFMFQU-15-1		Level	Level 4	
For implementation from	2020-21				
UWE Credit Rating	15		ECTS Credit Rating	7.5	
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics	
Department	FET Dept of Engin Design & Mathematics				
Module type:	Standard				
Pre-requisites		None			
Excluded Combinations		None			
Co- requisites		None			
Module Entry requirements None		None			

Part 2: Description

Overview: Fluid dynamics and thermodynamics are fundamental to the understanding of aerospace vehicle design, structure and performance. Understanding aerodynamics, propulsion, structural integrity, hydraulics all require a sound understanding of the principles of thermofluids.

The module is designed to provide a solid foundation of knowledge, with practical exercises that reinforce theory and will enable the extension to specialist knowledge in future years. Theory is underpinned by experiment and observation so that students can properly understand the mechanisms at work.

Educational Aims: The aim of this module is to introduce the fundamental concepts in fluid dynamics, thermodynamics and heat transfer for aerospace scientific methods and applications.

Outline Syllabus: Conservation principles of mass, momentum and energy including continuity, fluid momentum, Bernoulli's principle, work, heat and energy

Key Concepts and laws of thermodynamics

Phase Change and Steam

Non-Flow Energy Equation (NFEE) and Steady Flow Energy Equation (SFEE)

Gas Processes and Gas Laws

STUDENT AND ACADEMIC SERVICES

Hydrostatics

Dimensional Analysis

Incompressible and viscous flow including laminar and turbulent flow

Flow measurements including measurement systems and uncertainty analysis

Heat Engines and Thermodynamic Cycles

Introduction to heat transfer including conduction, convection, radiation, two-phase heat transfer and heat exchangers

Teaching and Learning Methods: The method of teaching and learning is designed so that students can quickly consolidate theoretical principles through exercises and laboratory experiments.

Lectures and lectorial sessions are used to convey concepts and principles which are then backed up by tutorials, self-paced sessions and hands-on laboratory experiments.

Part 3: Assessment

The assessment strategy is designed to encourage regular engagement with the acquisition of skills and knowledge which is motivated through observation and experiment and assessed through a laboratory report (component B).

The end of module examination (component A) provides the control condition assessment and assesses that students have a sound understanding of concepts and principles that are required for studies in aerodynamics, aerospace structures and propulsion systems encountered later in the programme. The examination will include analysis and reflection of experimental data from laboratory sessions.

The resit assessment will have the same format as the first sit assessment.

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A	√	75 %	2 hour written examination
Laboratory Report - Component B		25 %	Laboratory report (2500 words)
Resit Components	Final Assessment	Element weighting	Description
Examination - Component A	√	75 %	2 hour written examiation
Laboratory Report -			Laboratory report (2500 words)

	Part 4: Teaching and Learning Methods	
Learning Outcomes	On successful completion of this module students will achieve the following learning	g outcomes:
	Module Learning Outcomes	Reference
	Provide an accurate explanation of thermofluid properties and principles in fluid mechanics in introductory aerospace design scenarios (SM1b, SM2b)	MO1
	Describe and perform a basic analysis of the thermodynamics cycle (SM2b)	MO2
	Accurately assess simple flows and their behaviours (SM2b)	MO3
	Apply practical and laboratory skills relevant to thermofluid processes (P3, P8).	MO4

STUDENT AND ACADEMIC SERVICES

Contact Hours	Independent Study Hours:				
	Independent study/self-guided study	108			
	Total Independent Study Hours:	108			
	Scheduled Learning and Teaching Hours:				
	Laboratory work	4			
	Lectorials	24			
	Tutorials	12			
	Total Scheduled Learning and Teaching Hours:	40			
	Hours to be allocated	150			
	Allocated Hours	148			
Reading List	The reading list for this module can be accessed via the following link: https://rl.talis.com/3/uwe/lists/7B96BB76-EEF8-B0EA-00B1-1EFCA6F7212lUS&login=1	F.html?lang=en-			

Part 5:	Contributes	Towards
---------	-------------	---------

This module contributes towards the following programmes of study: