

MODULE SPECIFICATION

Part 1: Information					
Module Title	Advai	nced Machine Vision			
Module Code	UFMFMQ-15-3		Level	Level 6	
For implementation from	2019-20				
UWE Credit Rating	15		ECTS Credit Rating	7.5	
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics	
Department	FET [FET Dept of Engin Design & Mathematics			
Module type:	Stanc	Standard			
Pre-requisites		Introduction to Machine Vision 2019-20			
Excluded Combinations		None			
Co- requisites		None			
Module Entry requirements No		None			

Part 2: Description

Overview: Recent advances in robotic systems have seen more effort being put in developing devices that are capable of interacting with the physical world. Thus, acquiring information by direct sensing of the environment in which these devices operate is fundamental. The engineering and technological uses of machine vision permit its adaptive capability to be included in a variety of machine designs, including robots and other mobile devices. Machine vision allows devices to close the loop by sensing visual information to understand, interpret and operate within their environment.

Educational Aims: See Learning Outcomes.

Outline Syllabus: 2D and 3D feature Extraction:

Statistical features Geometric features Histogram based Model-based

Feature tracking and correspondence mapping:

SIFT(Scale Invariant Feature Transform), SURF(Speeded-Up Robust Features)

Particle Filtering

Motion-features based tracking

STUDENT AND ACADEMIC SERVICES

Machine Learning and its Application to Machine Vision:

Statistical Machine Learning (PDF and Likelihood models)

Classification and Clustering

Deep Learning Concepts:

CNN (Convolution Neural Network) and RNN (Recurrent Neural Network)

Reinforcement Learning

Actor-Critic Model (Feedback Models)

Teaching and Learning Methods: This module introduces state-of-the art computer vision and machine learning approaches and provides the platform required for the development of advanced robotics and vision systems. Building on introductory concepts of machine vision introduced in UFMFC9-15-3, this module delves into more complex image processing techniques mainly for scene understanding and interpretation and introduces concepts of deep learning.

Independent learning will constitute the remaining study time with an expectation that approximately 46 hours will be spent on self-directed study, a further 40 hours in support of the coursework and 16 hours in exam preparation.

Part 3: Assessment

Assessment strategy:

Students' achievements in the module will be assessed in two components both for the first sit and resit as follows.

Main assessment component (first sit)

Component A: Written Examination:

The examination will assess the every student's understanding and critical awareness of computer vision and machine learning concepts. They will need to be able to apply their understanding to real-life (case) scenarios. The written examination will be of 2 hours duration.

Component B: Group project

Component B will be assessed through a group project that will involve teams of students (ideally groups of 4 students) working on advanced machine vision methods for 2D and 3D scene analysis and understanding. Scenes will be generated using a simulation environment (such as gazebo).

The different elements contribute to Component B as follows:

Group presentation (25 %)

Demonstration of software prototype for scene analysis (25%)

Group Report (50%) of 4000 words.

Formative assessment will be provided as oral feedback throughout the laboratory sessions particularly with respect to the workshop exercises.

Resit assessment:

Component A will be a 2 hour written exam.

Component B will be coursework (individual) where students will be required to research and provide a detailed methodology of solving a real-world problem using machine vision (up to 2000 words).

First Sit Components	Final Assessment	Element weighting	Description
Report - Component B		38 %	Group report (4000 words)
Practical Skills Assessment - Component B		18 %	Demonstration of software prototype for scene understanding

STUDENT AND ACADEMIC SERVICES

Presentation - Component B		19 %	Group presentation
Examination - Component A	✓	25 %	Written examination (2 hours)
Resit Components	Final Assessment	Element weighting	Description
Report - Component B		75 %	Individual research report (up to 2000 words) on a specialist machine vision application
Examination - Component A	✓	25 %	Written examination (2 hours)

	Part 4: Teaching and Learning Methods		
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:
	Module Learning Outcomes		
	Develop and demonstrate a good understanding of 2D Imaging data Capture Techniques	and Data	MO1
	Understand and Implement feature extraction approaches for mappin tracking	g and	MO2
	Demonstrate an understanding of object detection and identification a	approaches	MO3
	Demonstrate understanding of machine learning approaches and the to Computer Vision based solutions	ir application	MO4
	Develop understanding of classification approaches (Image or Object		MO5
	Build and demonstrate an understanding to Deep Learning concepts		MO6
	Demonstrate understanding and application of Deep Learning approaulision Problems (Face recognition etc)	aches to	MO7
Contact Hours	Independent Study Hours:		
	Independent study/self-guided study		6
	Total Independent Study Hours:	4	6
	Placement Study Hours:		
	Placement	5	6
	Total Placement Study Hours:	5	6
	Scheduled Learning and Teaching Hours:		
	Face-to-face learning	4	8

STUDENT AND ACADEMIC SERVICES

	Total Scheduled Learning and Teaching Hours:	48
	Hours to be allocated	150
	Allocated Hours	150
Reading List	The reading list for this module can be accessed via the following link:	
	https://uwe.rl.talis.com/index.html	

Part 5: Contributes Towards
This module contributes towards the following programmes of study: