

MODULE SPECIFICATION

Part 1: Information								
Module Title	Electronic Systems							
Module Code	UFMF7Q-30-3		Level	Level 6				
For implementation from	2018-19							
UWE Credit Rating	30		ECTS Credit Rating	15				
Faculty		ty of Environment & hology	Field	Engineering, Design and Mathematics				
Department	FET Dept of Engin Design & Mathematics							
Contributes towards								
Module type:	Standard							
Pre-requisites		None						
Excluded Combinations		None						
Co- requisites		None						
Module Entry requirements		None						

Part 2: Description

Educational Aims: This syllabus is designed to enable the learner to understand and design MOSIS and power electronic systems, as well as have an understanding of how VLSI circuits are used in industry.

Outline Syllabus: This module focusses on electronic design and power electronics, whilst also introducing the concepts of large scale integration. Key areas for study are electronic system design techniques and how to integrate these on a large scale within power electronics.

The topics covered in this unit are: Electronic Design: Sequential Design Flip Flops Mathematical Operators Minimisation

Power Electronics: Power Electronics Converters Thyristor Controlled Series Compensator Static VAR Compensator [SVC] / Static Synchronous Compensator (StatCom) Unified Power Flow Controller [UPFC] / Dynamic Voltage Restoration [DVR]

Very Large-Scale Integration [VLSI]: Component Construction Metal Oxide Semiconductor Implementation Service (MOSIS) Regular Array Structures Analogue VLSI

Teaching and Learning Methods: See Assessment

Part 3: Assessment

Component A - Exam - 2 Hours - The assessment will encompass the analysis of power electronics systems and the creation of electronic sequences for given applications.

Component B - Individual Presentation – Students are given a sample electronic system and must produce and present an analysis of N and CMOS arrays with designs for a MOSIS logic device.

The resit assessment tasks for this module will involve a rework and reflective evaluation of the work carried out in the original task.

First Sit Components	Final Assessment	Element weighting	Description
Presentation - Component B		50 %	Individual presentation
Examination - Component A	✓	50 %	Examination (2 hours)
Resit Components	Final Assessment	Element weighting	Description
Presentation - Component		50 %	Individual presentation
В		30 /0	

STUDENT AND ACADEMIC SERVICES

	Part 4: Teaching	and Learning Methods					
Learning Outcomes	On successful completion of this module students will be able to:						
	Module Learning Outcomes						
		culations					
	MO2 Create	Create and evaluate electronic sequences for engineering applications.					
		Analyse NMOS and CMOS arrays for logic applications.					
	MO4 Desig	Design and evaluate MOSIS devices for logic applications.					
Contact Hours	Contact Hours						
	Independent Study Hours:						
	Independent study/self-guide	228					
	Tot	al Independent Study Hours:	228				
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	72					
	Total Scheduled L	72					
	Hours to be allocated		300				
	Allocated Hours	300					
Reading List	The reading list for this module can be accessed via the following link:						
	https://uwe.rl.talis.com/index.html						