

MODULE SPECIFICATION

Part 1: Information							
Module Title	Electromechanical Systems Analysis						
Module Code	UFMFWP-30-2		Level	Level 5			
For implementation from	2019-20						
UWE Credit Rating	30		ECTS Credit Rating	15			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [FET Dept of Engin Design & Mathematics					
Module type:	Standard						
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: Learners will develop the theoretical understanding of electromechanical systems and how to use such systems for analysing and testing applications in the nuclear industry.

Outline Syllabus: The topics covered in this unit are:

Electronic Systems Analysis: Nuclear Detection Electronics Systems. Classification. Microprocessing. Control System Response.

Mechanical System Analysis: Simple System Vibration. Vibration Transmission. Continuous System Vibration.

Non-Destructive Evaluation: Visual.

Electrical. Sonic. Other NDE Techniques. Condition Monitoring.

In this module the following mathematical topics will be introduced and developed: Laplace Transforms. Systems of Linear Differential Equations. Z transforms.

Teaching and Learning Methods: The Electromechanical Systems and Design module introduces principles of electronic systems, vibration analysis and non-destructive evaluation methods in the nuclear industry. Learners will gain a through theoretical and practical basis to analyse electromechanical systems.

Part 3: Assessment

Component A – Multiple Choice Exam – 2 hours – This exam will assess the learners' understanding of advanced concepts of Electromechanical Systems analysis. It will also assess the learners' mathematical analysis skills of electromechanical systems calculations.

Component B – Student Led Seminar and Poster Presentation – The seminar will assess the learners' ability to evaluate non-destructive evaluation techniques. Learners will analyse electronic processing systems and mechanical vibration systems and present their findings during a poster presentation.

The resit assessment tasks for this module will involve an expanded poster presentation, to cover all learning outcomes of component B.

First Sit Components	Final Assessment	Element weighting	Description
Set Exercise - Component B		30 %	Seminar
Poster - Component B		45 %	Poster presentation
Examination - Component A	✓	25 %	Multiple choice exam (2 hours)
Resit Components	Final Assessment	Element weighting	Description
Poster - Component B		75 %	Poster presentation covering learning outcomes 2-4
Examination - Component A	✓	25 %	Multiple choice exam (2 hours)

	Fart 4. Teaching and Learning methods						
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:						
	Module Learning Outcomes	Reference					
	Conduct electromechanical systems analysis calculations	MO1					
	Analyse electronic processing systems for nuclear detection applications	MO2					
	Analyse mechanical vibration systems for equipment protection purposes	MO3					
	Evaluate electromechanical systems using non-destructive techniques	MO4					
Contact Hours	Independent Study Hours:						
	Independent study/self-guided study	228					
	Total Independent Study Hours:	228					
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	72					
	Total Scheduled Learning and Teaching Hours:	72					
	Hours to be allocated	300					
	Allocated Hours	300					
Reading List	The reading list for this module can be accessed via the following link:						
	https://uwe.rl.talis.com/index.html						

Part 4: Teaching and Learning Methods

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mechanical Engineering with Nuclear {Apprenticeship} [Sep][PT][BTC][4yrs] BEng (Hons) 2018-19

Electromechanical Engineering (Nuclear){Apprenticeship}(Sep][PT][BTC][3yrs] FdSc 2018-19

Electrical, Electronic and Control Engineering with Nuclear {Apprenticeship} [Sep][FT][BTC][4yrs] BEng (Hons) 2018-19