

MODULE SPECIFICATION

Part 1: Information							
Module Title	Dyna	Dynamics (PBL)					
Module Code	UFMFLP-15-2		Level	Level 5			
For implementation from	2020-21						
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [Dept of Engin Design & Mathematics					
Module type:	Stand	andard					
Pre-requisites		Engineering Mathematics 2020-21					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: An understanding of dynamic behaviour is an essential key element in the makeup of a good Engineer. This module seeks to instil a confident understanding of the discipline to build upon the basics introduced in level one. This will be achieved through strongly context based learning.

Outline Syllabus: Revision basic dynamics, rigid body motion, vector methods, single dof free vibration.

Vibration - undamped single d.o.f. forced vibration

Damping and its effect in 1 d.o.f. systems

Forced oscillation

Introduction to 2 d.o.f. systems

Principles of vibration measurement

1-d wave equation

Mechanisms (open and closed) - four bar linkage

Vector analysis of mechanisms for position, velocity and acceleration

Crank-slider mechanisms

Teaching and Learning Methods: The problem based learning strategy adopted in this module will introduce students to the modelling and analysis of systems exhibiting Dynamic behaviours. This will be done through the adoption of heavily contextualised and relevant examples. This will motivate students to understand theoretical principles and concepts as practising engineers. At the same time students will be able to demonstrate understanding of the material and be able to apply the methods and techniques in a variety of contexts.

Part 3: Assessment

The Assessment Strategy is to introduce project / application based learning and assessment into the module through the traditional platform of both project / application based examination and coursework, as detailed below.

Component A: 2 hour examination will assess a mixture of questions involving underlying principles and applications under controlled conditions.

Component B: A portfolio of project based assessments that cover a range of tasks of approximately 2000 words or equivalent.

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A	✓	75 %	online End of semester exam (2 hours)
Portfolio - Component B		25 %	A portfolio of project based assessment of 2000 words or equivalent
Resit Components	Final Assessment	Element weighting	Description
Examination - Component A	\checkmark	75 %	Online Exam (2 hours)
Portfolio - Component B		25 %	A portfolio of project based assessments of 2000 words or equivalent

Learning Outcomes	On successful completion of this module students will achieve the follo	owing learning	outcomes:					
	Module Learning Outcomes							
	Understand the principles and methods used in the study and analysis of dynamic behaviour, mechanical vibrations and mechanisms							
	Demonstrate an understanding and knowledge of the key mathemati needed to properly analyse dynamic vibrations and systems	cal principles	MO2					
	Identify and describe the performance of dynamic systems using analytical methods and modelling tools							
	Demonstrate the ability to apply appropriate theoretical and practical methods to the analysis and solution of laboratory based problems							
	Show cognitive skills with respect to modelling and simplifying real problems, and applying mathematical methods of analysis							
	Demonstrate skills in problem formulation and decision making, inter experimental results.	MO6						
Contact Hours	Independent Study Hours:							
	Independent study/self-guided study	11	L4					
	Total Independent Study Hours: 11							
	Scheduled Learning and Teaching Hours:							
	Face-to-face learning3							
	Total Scheduled Learning and Teaching Hours:	6						
	Hours to be allocated	15	150					
	Allocated Hours	50						
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmflp-15-2.html							

Part 4: Teaching and Learning Methods

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Automotive Engineering {Foundation} [Sep][FT][Frenchay][5yrs] MEng 2018-19

Automotive Engineering {Foundation} [Sep][SW][Frenchay][6yrs] MEng 2018-19

Automotive Engineering {Foundation} [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19

Automotive Engineering {Foundation} [Sep][SW][Frenchay][5yrs] BEng (Hons) 2018-19