

MODULE SPECIFICATION

Part 1: Information					
Module Title	Engineering Mathematics 2 (PBL)				
Module Code	UFMFKP-15-2		Level	Level 5	
For implementation from	2019-	2019-20			
UWE Credit Rating	15		ECTS Credit Rating	7.5	
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics	
Department		Dept of Engin Design & Mathematics			
Module type:	Stanc	andard			
Pre-requisites	1	Engineering Mathem	atics 2019-20		
Excluded Combinations		None			
Co- requisites		None			
Module Entry requirements		None			

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: Numerical Methods for Partial Differential Equations (PDE) Finite differences: formulae for first and second order derivatives; schemes for one and twodimensional elliptic BVP (e.g. Poisson's equation). Solving linear equations: tri-diagonal system via LU factorisation; Jacobi and Gauss-Seidel methods.

Numerical Software

Basic syntax; commands and simple programs; reading documentation for a given function; using basic functionality to do relevant computations (e.g. Fourier coefficients, function values, series solution of ODE and PDE, solving linear systems).

Analytical Methods for PDE

Fourier series: periodic functions; odd/even functions; representation via Fourier series; convergence of Fourier series; Fourier sine/cosine series. 2nd order ODE: review; eigenvalue boundary value problems (BVP). PDE: examples in applied context; solution via separation of variables technique (e.g. Laplace's equation). Linear Systems

Linear systems of differential equations: spectral solution (via eigenvalues and eigenvectors); stability (concept and determination via eigenvalues); state-feedback control; pole-placement; stabilization.

Input-Output systems: transfer function; stability (concept and determination via poles); output response.

Teaching and Learning Methods: Students will encounter a variety of more advanced mathematical techniques used to model and analyse engineering problems through strongly context based learning. The problem based learning strategy adopted in this module will introduce the mathematical topics in an engineering context. This will motivate students to understand theoretical principles and concepts as practising engineers. At the same time students will be able to demonstrate understanding of the material and be able to apply the methods and techniques in a variety of contexts.

Part 3: Assessment

Component A: Assessed by end of semester exam. The examination is summative and assesses the students' understanding of concepts, methods and techniques, and their ability to apply them in solving relevant problems, focussed on automotive engineering applications. Students will be given a structured extended investigation to work on independently prior to the examination. The examination will involve students being assessed on this work by an application focussed question in the exam.

Component B: The coursework will encourage early engagement with the module and to provide timely feedback to help identify strengths and weaknesses.

First Sit Components	Final Assessment	Element weighting	Description
Online Assignment - Component B		25 %	Coursework (dewis e-assessment)
Examination - Component A	\checkmark	75 %	Written examination (2 hours)
Resit Components	Final Assessment	Element weighting	Description
Online Assignment - Component B		25 %	Coursework (dewis e-assessment)
Examination - Component A	\checkmark	75 %	Written examination (2 hours)

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:					
	Module Learning Outcomes	Reference				
	Demonstrate competency in using state-space or transform-domain techniques to understand the quantitative and qualitative behaviour of linear systems of differential equations	MO1				
	Demonstrate competency in the computation of Fourier series of periodic functions or analytical solution of certain partial differential equations via separation of variables and Fourier techniques	MO2				
	Demonstrate competency in formulating finite-difference schemes for certain ordinary or partial differential equations and using an appropriate numerical method to solve associated systems of linear equations	MO3				
	Provide valid interpretations of mathematical concepts and solutions in a given mathematical or physical context	MO4				

Contact Hours	Independent Study Hours:				
	Independent study/self-guided study	114			
	Total Independent Study Hours:	114			
	Scheduled Learning and Teaching Hours:				
	Face-to-face learning	36			
	Total Scheduled Learning and Teaching Hours:	36			
	Hours to be allocated	150			
	Allocated Hours	150			
Reading List	The reading list for this module can be accessed via the following link:				
	https://uwe.rl.talis.com/modules/ufmfkp-15-2.html				

Part 5: Contributes Towards	
This module contributes towards the following programmes of study:	
Automotive Engineering [Sep][SW][Frenchay][5yrs] MEng 2018-19	
Automotive Engineering [Sep][FT][Frenchay][4yrs] MEng 2018-19	
Automotive Engineering [Sep][SW][Frenchay][4yrs] BEng (Hons) 2018-19	
Automotive Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19	