

MODULE SPECIFICATION

Part 1: Information						
Module Title	Computational Mathematics					
Module Code	UFMFGH-30-M		Level	Level 7		
For implementation from	2019-20					
UWE Credit Rating	30		ECTS Credit Rating	15		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET [ET Dept of Engin Design & Mathematics				
Module type:	Standard					
Pre-requisites		Numerical Analysis 2019-20				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Educational Aims: In this module students will investigate problems, methods and techniques from the field of computational mathematics, specifically the areas of numerical linear algebra and numerical optimization. We will consider applications, formulate algorithms and investigate properties of the algorithms such as convergence, stability and computational complexity.

Outline Syllabus: The following syllabus is indicative:

Numerical Linear Algebra:

Systems of linear equations (LU factorisation, Cholesky factorisation)

Linear least-squares problems (normal equations, QR factorisation, modified Gram-Schmidt method, Householder and Givens transformations)

Eigenvalue and singular value problems (power iteration, inverse iteration, Rayleigh quotient, subspace iteration, Jacobi method, QR method, bidiagonalisation)

Iterative methods for systems of linear equations (Jacobi, Gauss-Seidel, SOR, Krylov, multigrid, domain decomposition, Schur complement)

STUDENT AND ACADEMIC SERVICES

Numerical Optimization:

Nonlinear equations (Newton method, secant method)

Unconstrained optimization (steepest descent, Newton method, conjugate gradients, Gauss-Newton, Levenberg-Marquardt, BFGS)

Constrained optimization (KKT conditions, linear programming, interior point methods)

Possible application areas: regression, numerical integration, solving differential equations, machine learning, image processing, signal processing.

Teaching and Learning Methods: Typically the scheduled teaching hours take the form of: whole group lectures, used to deliver new material and to consolidate previous material, small group classroom tutorials with activities designed to reinforce and enhance students' understanding of the lecture material and small group computing laboratory sessions designed to develop the students' ability to generate and utilise software and to analyse software output.

Part 3: Assessment

The assessment will involve two equally weighted components; a written examination and coursework that will require students to demonstrate both practical skills and theoretical knowledge of a numerical analyst.

The first two learning outcomes will be assessed in both the exam and the coursework. The last two learning outcomes will be assessed primarily in the coursework.

Each coursework assignment will be a short piece of work designed to provide students the opportunity to investigate the implementation of computational methods and obtain feedback. Each assignment will result in a written report and the creation of computer code. The assignment tasks will involve implementation of algorithms, choosing and applying methods to an application and comparing methods. Due to the nature of the module the output will include a significant amount of graphical and tabular output which will potentially lead to a high page count. For some tasks, individualised data sets will be used to discourage plagiarism.

First Sit Components	Final Assessment	Element weighting	Description
Report - Component B		25 %	Written report 1 (15 pages)
Report - Component B		25 %	Written report 2 (15 pages)
Examination - Component A	✓	50 %	Written examination (3 hours)
Resit Components	Final Assessment	Element weighting	Description
Report - Component B		50 %	Written report (30 pages)
Examination - Component A	✓	50 %	Written examination (3 hours)

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:					
	Module Learning Outcomes					
	Describe, derive and interpret algorithms for problems in computational mathematics					
	For algorithms in computational mathematics analyse aspects such as error convergence, stability and computational complexity					
	Compare algorithms and choose and apply the appropriate algorithm a combination of algorithms for a problem or application in computation mathematics		MO3			
	Implement algorithms and design and evaluate tests for these algorith computer programming environment	nms using a	MO4			
Contact Hours	Independent Study Hours:					
	Independent study/self-guided study	22	28			
	Total Independent Study Hours:	22	28			
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning 72					
	Total Scheduled Learning and Teaching Hours:		2			
	Hours to be allocated	00				
	Allocated Hours	30	00			
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/index.html					

	Part 5: Contributes Towards	
This module contributes towards the	ollowing programmes of study:	