

MODULE SPECIFICATION

Part 1: Information								
Module Title	Adva	Advanced Mechatronics						
Module Code	UFMFTL-15-M		Level	Level 7				
For implementation from	2019-	2019-20						
UWE Credit Rating	15		ECTS Credit Rating	7.5				
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics				
Department	FET I	Dept of Engin Design & Mathematics						
Module type:	Stand	dard						
Pre-requisites		Integrated Electro-Mechanical Systems 2019-20						
Excluded Combinations		None						
Co- requisites		None						
Module Entry requirements		None						

Part 2: Description

Overview: This course is an introduction to the modelling of mechatronic systems, which require integration of the mechanical and electrical engineering disciplines within a unified framework applied to real industrial applications.

Educational Aims: There are significant laboratory-based design experiences wherein the design theory, experimentation basics, integration principles will be taught.

Outline Syllabus: In this course, the topics covered principally systems modelling and control and may include but not be limited to the followings:

Using the myRIO with LabVIEW to implement closed-loop control

Open/Close loop control

Controllers PC and PLC and Embedded

Software for control

Languages and Platforms

Real-time Control

Analog Feedback Systems

Electronic Scale

Brushless Motor Control

Examples of mechatronic systems may include: Robots, Machine tools, Car Engine management system, etc.

Teaching and Learning Methods: See Assessment

Part 3: Assessment

The module is examined through work in groups to develop their knowledge and understanding of the engineering process - i.e. analysis of problem, conceptualisation of a solution and its iteration, simulation and proof-of-concept testing - in order to test ability of students to work in teams, as well as via a coursework element designed to assess the students' abilities in using modelling software packages, and their competencies in critically evaluating and analysing results from modelling and simulation.

The industrial project (Component B) will be assessed through a group report where they submit a portfolio of their design work. The group presentation (Component A) will give them a real-engineering problem solving experience as they will be working in teams on an industrial problem provided by industrial partners and will be individually assessed through a questioning session.

Component A: A technical oral (group) presentation to assess how students implement their understanding and knowledge of the fundamentals of integrated electromechanical systems and mechatronics. They will explain their approach to simulate real systems and their experimental results to finding solutions to real-world industrial problems (PBL). Following the group presentation, there will be an individual questioning session where the teaching team will ask questions to evaluate fundamental knowledge and assess the contribution of every student in the group. The overall oral presentation (presentation and questioning session) will last for a maximum of 45 minutes.

Component B: Depending on the industrial problems plotted, the design project will include but not be limited to the followings: (i) a 3D CAD model of an engineering system, (ii) 2D component drawings, (iii) appropriate software, (iv) implementation and validation of the proposed solution through the use of relevant hardware to evaluate full comprehension of the syllabus and learning outcomes. This will be assessed using the standard group assessment strategy.

Resit Strategy: The resit strategy will be to provide the group of students, or individuals, with the opportunity to rework the project carried out in the first sit in order to demonstrate that they have achieved all of the learning outcomes. Component A will be assessed via a presentation and individual questioning and Component B will be assessed by an individual coursework.

First Sit Components	Final Assessment	Element weighting	Description
Report - Component B		50 %	Group coursework (Report) 40 pages
Presentation - Component A	~	50 %	Group presentation and individual questioning
Resit Components	Final Assessment	Element weighting	Description
Report - Component B		50 %	Individual coursework (Report) - 20 pages
Presentation - Component A	~	50 %	Presentation and individual questioning

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:			
	Module Learning Outcomes					
	Extract information from data sheets that describe hardware.					
	Demonstrate a thorough understanding of how microprocessor systems work.					
	Enumerate the components of complex Mechatronics Systems.	MO2 MO3				
	Produce a technical analysis of a Mechatronic System.	MO4				
	Develop and implement an Embedded Mechatronic controller.	MO5				
	Demonstrate knowledge of programming, digital electronics and microprocessors or controlled systems in the design of advanced mechatronic systems.					
	Develop innovative solutions to automation problems that arise in advanced manufacturing.					
Contact Hours	Independent Study Hours:					
	Independent study/self-guided study	10				
	Total Independent Study Hours:	108				
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning		42			
	Total Scheduled Learning and Teaching Hours:	4	2			
	Hours to be allocated	50				
	Allocated Hours	15	50			
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/index.html					

Part 5: Contributes Towards

This module contributes towards the following programmes of study: