

MODULE SPECIFICATION

Part 1: Information							
Module Title	Contr	ntrol Engineering					
Module Code	UFMFYJ-15-3		Level	Level 6			
For implementation from	2019-	2019-20					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [Dept of Engin Design & Mathematics					
Module type:	Stand	dard					
Pre-requisites		Engineering Mathematics 2 2019-20					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: System modelling (Laplace operator, transfer functions etc) Time response of first and second order systems Block diagram representation Frequency response of first and second order systems System identification The s-plane and root loci Controllers (PID, IP-D etc) State Space modelling techniques Approaches to dealing with non-linearity

Teaching and Learning Methods: Large group lecture supported by small group tutorial sessions. Study time outside of contact hours will be spent on going through exercises and example problems. Lab sessions and demonstrations will provide experience of modelling and simulation. Scheduled learning includes lectures, tutorials\lab sessions. Independent learning includes hours engaged with essential reading, assignment preparation and completion etc.

Activity Approximate time, h

Contact (36)
Directed Learning (24)
Self-directed learning (45)
Exam preparation (45)
Total (150)

Part 3: Assessment

Component A

Assessed via end of semester Exam.

Formative assessments (not contributing to module mark) is provided via support in tutorial sessions. End of semester exam is three hours.

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A	\checkmark	100 %	End of semester exam - 3 hours (controlled conditions)
Resit Components	Final Assessment	Element weighting	Description
Examination - Component A	\checkmark	100 %	Examination 3 hours

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:			
	Module Learning Outcomes					
	Demonstrate knowledge of scientific principles and methods necessary to underpin their education in mechanical and related engineering disciplines, to enable appreciation of its scientific and engineering context and to support their understanding of future developments and technologies.					
	Demonstrate knowledge of mathematical principles necessary to underpin their MO2 education in mechanical and related engineering disciplines and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems.					
	Apply and integrate knowledge of other engineering disciplines to support the study of mechanical and related engineering disciplines.					
	Use engineering principles and apply them to analyse key engineering processes					
	Identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques					
Contact Hours	Independent Study Hours:					
	Independent study/self-guided study	4				
	Total Independent Study Hours:	11	4			

	cheduled Learning and Teaching Hours:				
	Face-to-face learning	36			
	Total Scheduled Learning and Teaching Hours:	36			
	Hours to be allocated	150			
	Allocated Hours	150			
Reading List	The reading list for this module can be accessed via the following link:				
	https://uwe.rl.talis.com/modules/ufmfyj-15-3.html				

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mechanical Engineering (Mechatronics) {Top-Up} [Sep][FT][AustonSingapore][1yr] BEng (Hons) 2019-20 Mechanical Engineering (Mechatronics) {Top-Up} [Feb][FT][AustonSingapore][1yr] BEng (Hons) 2019-20 Mechanical Engineering (Mechatronics) {Top-Up} [May][FT][AustonSingapore][1yr] BEng (Hons) 2019-20 Mechanical Engineering (Mechatronics) {Top-Up} [Sep][FT][AustonSriLanka][1yr] BEng (Hons) 2019-20 Mechanical Engineering (Mechatronics) {Top-Up} [Feb][FT][AustonSriLanka][1yr] BEng (Hons) 2019-20 Mechanical Engineering (Mechatronics) {Top-Up} [Feb][FT][AustonSriLanka][1yr] BEng (Hons) 2019-20 Mechanical Engineering (Mechatronics) {Top-Up} [May][FT][AustonSriLanka][1yr] BEng (Hons) 2019-20