

MODULE SPECIFICATION

Part 1: Information							
Module Title	Engineering Principles (Building Engineering)						
Module Code	UBLLWQ-15-1		Level	Level 4			
For implementation from	2020-	21					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Architecture and the Built Environment			
Department	FET [FET Dept of Architecture & Built Environ					
Module Type:	Stand	Standard					
Pre-requisites		None					
Excluded Combinations		None					
Co-requisites		None					
Module Entry Requirements		None					
PSRB Requirements		None					

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: Underpinning Physics:

Force, energy, work and power.

Thermodynamics and Fluids:

Thermodynamic laws, reversible processes, steady flow energy equation, gas laws, pressure in static fluids, atmospheric pressure, Bernoulli's equation, flow measurement device

Statics and Dynamics:

Forces, moments and centre of gravity, equilibrium and reactions in statically determinate structures

Bending moment and shear force diagrams. Truss analysis, Axial stress and strain

Kinematics, projectiles, angular motion, Newton's laws of motion, and vibration

STUDENT AND ACADEMIC SERVICES

Teaching and Learning Methods: Typically the scheduled teaching hours take the form of whole group lectures, workshops, laboratories and tutorials

Contact time: 36 hours

Assimilation and development of knowledge: 74 hours Examination and assessment preparation: 40 hours

TOTAL: 150 HOURS

Scheduled learning: Lectures, seminars, tutorials, and laboratory demonstrations.

Independent learning: Directed reading, and laboratory work.

Part 3: Assessment

Component A: The Component A mark is calculated by averaging the marks of four e-tests. The four e-tests are taken outside the class throughout the year after each of the main topics are completed (times may vary). Students have three attempts at each test with the highest scoring attempt recorded as their test score.

First Sit Components	Final Assessment	Element weighting	Description
Online Assignment - Component A		100 %	Average mark of four e-tests taken throughout module
Resit Components	Final Assessment	Element weighting	Description
Online Assignment - Component A		100 %	Average mark of four e-tests taken throughout module

	Part 4: Teaching and Learning Methods							
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:							
	Module Learning Outcomes		Reference					
	Manipulate units and expressions defining physical properties							
	State and apply physical laws relating to statics and dynamics to the solution of engineering problems							
	State and apply physical laws relating to thermodynamics and fluids to the solution of engineering problems							
	Communicate in written form the relationship between underlying physical laws and engineering principles							
	Apply experimental method to laboratory demonstrations of engineeri	ng principles	MO5					
Contact Hours	Independent Study Hours:							
	Independent study/self-guided study 114							
	Total Independent Study Hours: 11							

STUDENT AND ACADEMIC SERVICES

	Scheduled Learning and Teaching Hours:				
	Face-to-face learning	36			
	Total Scheduled Learning and Teaching Hours:	36			
	Hours to be allocated	150			
	Allocated Hours	150			
Reading List	The reading list for this module can be accessed via the following link:				
	https://uwe.rl.talis.com/modules/ubllwq-15-1.html				

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Building Services Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2020-21

Building Services Engineering {Apprenticeship} [Sep][PT][Frenchay][5yrs] BEng (Hons) 2019-20

Architecture and Environmental Engineering {Foundation} [Sep][SW][Frenchay][6yrs] BEng (Hons) 2019-20

Architecture and Environmental Engineering {Foundation} [Sep][FT][Frenchay][5yrs] BEng (Hons) 2019-20