

MODULE SPECIFICATION

Part 1: Information							
Module Title	Medio	ical Genetics					
Module Code	USSK	(BH-30-3	Level	Level 6			
For implementation from	2020-	2020-21					
UWE Credit Rating	30		ECTS Credit Rating	15			
Faculty		ty of Health & ed Sciences	Field	Applied Sciences			
Department	HAS	Dept of Applied Sciences					
Module type:	Stand	dard					
Pre-requisites		Molecular Genetics 2020-21					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: Overview: scientific basis of medical genetics – human genome- structure and function; human genome mapping; modes of inheritance of genetic disorders; clinical applications – genetic assessment, prenatal diagnosis, treatment and prevention of disease.

Mechanisms of genetic modification; DNA damage and repair mechanisms, cell cycle, epigenetics, imprinting, clinical conditions related to genetic modification.

DNA analysis – indirect and direct mutant gene tracking; techniques for demonstration of DNA mutation/polymorphisms including PCR, MLPA, Sequencing etc. Chromosome analysis – karyotyping, FISH, etc; heteromorphisms; mitochondrial chromosomes; chromosome aberrations.

Gametogenesis – meiosis; spermatogenesis; oogenesis; fertilisation ; Lyonisation; sex determination and differentiation; genomic imprinting.

Inheritance modes of genetic disorders – autosomal and sex-linked; non-Mendelian inheritance – mutilfactorial – continuous and discontinuous; twin concordance, family correlation studies. Somatic cell disorders; mitochondrial disorders.

Clinical applications – genetic assessment, communication of advice, medical ethics; Prenatal

STUDENT AND ACADEMIC SERVICES

diagnosis; population screening; prevention and treatment of genetic disease; gene therapy; Genetics of common diseases; Immunogenetics, cancer genetics, inborn errors of metabolism, RNA biology and alternative splicing, disorders of development.

Integral to the module will be a series of workshops on ethical aspects of genetic testing and manipulation, including consideration of cloning, preimplantation genetic diagnosis and "saviour siblings".

Teaching and Learning Methods: Students will interact weekly (3 hr timeslot) with staff for lectures/lectorials/tutorials on the scheduled topic. Extra workshops will be provided to cover the ethical aspects and these will cover the underpinning genetic techniques and limitations that contribute to the ethical dilemmas. Workshops tutorials will also cover a range of genetic testing techniques to underpin knowledge for assessments and lectures. Presentation sessions will allow students to engage with the issues surrounding genetic testing and will be explored with the input of staff members.

Research material from group presentations will be loaded onto Blackboard for knowledge exchange between students and to contribute to learning.

The module will be delivered as mix of lectures and integrated tutorial sessions – with computerlearning support together with a student centred research exercise on genetic testing.

Students will be expected to be independently engaged in further research indicated by the subject matter covered in the lectures and indicated by specific reading and reference lists; students will be expected to develop the content with self-directed learning.

Scheduled learning includes lectures, lectorials, seminars, tutorials.

Independent learning includes hours engaged with essential reading, case study preparation, assignment preparation and completion etc. These sessions constitute an average time per level. Scheduled sessions may vary slightly depending on the module choices you make.

Part 3: Assessment

All specialist subject modules on the BSc BMS programme have a 40:60 weighting of course work to final exam. Coursework as decided by the module leader in line with the programme assessment strategy.

The module will be assessed by an online examination (with a 24 hour window for submission) on the lecture material, together with two pieces of coursework designed to encourage extra reading beyond the lecture notes provided at the ethical and techniques workshops. The first piece of coursework involves a detailed assessment of a genetic disease including: symptoms, epidemiology, underpinning genetics and molecular pathways, current and novel approaches to treatment - presented as a 1500 word essay. The second piece of coursework will be a group debate on ethical issues in genetic testing.

Feedback will be provided on all coursework and there will also be opportunity in tutorials to discuss student progress and understanding.

Details of the requirements for each component will be provided in the module handbook together with a marking criteria and mark sheet by which students can guide their performance.

First Sit Components	Final Assessment	Element weighting	Description
Written Assignment - Component B		20 %	Research essay (1500 words)
Set Exercise - Component B		20 %	Ethical debate
Examination (Online) - Component A	~	60 %	Online open book examination (24 hours)

STUDENT AND ACADEMIC SERVICES

Resit Components	Final Assessment	Element weighting	Description
Written Assignment - Component B		40 %	Extended research exercise (3000 words)
Examination (Online) - Component A	\checkmark	60 %	Online open book examination (24 hours)

	Part 4: Teaching and Learning Methods					
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:			
	Module Learning Outcomes					
	Discuss Chromosome morphology and classification					
	Discuss the future potential of human genetics and its ethical dilemmas					
	Identify the modes of inheritance of specific autosomal and sex-linked genetic disorders together with phenotypic findings					
	Review the current molecular approaches to gene cloning, characteri mapping, and the mechanisms involved in disease pathogenesis	sation and	MO4			
	Evaluate the various prenatal diagnostic tests in terms of the procedu approaches and types of abnormality that might be detected	ral	MO5			
	Outline the application of medical genetics to diagnosis, counselling a of genetic disease	and therapy	MO6			
	Integrate principles of Mendelian genetics, cytogenetics, and molecular genetics with their clinical application in modern medicine					
Contact Hours	Independent Study Hours:					
	Independent study/self-guided study 23					
	Total Independent Study Hours: 23					
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning 60					
	Total Scheduled Learning and Teaching Hours:					
	Hours to be allocated 30					
	Allocated Hours	30	00			
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/usskbh-30-3.html					

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Biomedical Science [Sep][FT][Frenchay][4yrs] MSci 2018-19 Healthcare Science (Genetic Science) [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19 Biomedical Science [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19 Biological Sciences [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19 Biological Sciences [Sep][FT][Frenchay][4yrs] MSci 2018-19