

MODULE SPECIFICATION

Part 1: Information							
Module Title	Advanced Structural Analysis						
Module Code	UBGMM3-15-3		Level	Level 6			
For implementation from	2020-	2020-21					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Geography and Environmental Management			
Department	FET [ET Dept of Geography & Envrnmental Mgmt					
Module type:	Standard						
Pre-requisites		Applications of Mathematics in Civil and Environmental Engineering 2020-21, Structural Analysis 2020-21					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: Pre-requisites: 60 credits at Level 2 To include: UFMFF7-15-2 Applications of Mathematics for Civil and Environmental Engineering

Educational Aims: In this module students will develop the necessary knowledge, understanding and skills to analyse and solve problems relating to multi-variable structural systems of both statically determinate and indeterminate structure types, including plates.

In addition the educational experience may explore, develop, and practise but not formally discretely assess the following:

Appreciation of the importance of validation and verification in interpretation of computer output. Appreciation of the uncertainties inherent in selection of material properties, loadings and boundary conditions.

Outline Syllabus: The syllabus includes:

Matrix methods in structural analysis: matrix algebra, matrix displacement method. Stiffness method of structural analysis of pin-jointed structures and frames: nodes, elements, stiffness matrix, loads and restraints.

Introduction to finite elements analysis: nodes, elements, meshes, stiffness matrix, boundary conditions and loads.

Practical finite elements techniques: element types, mesh generation, pre-processing, postprocessing.

Influence line analysis.

Modelling dynamic systems: single degree of freedom systems, multi degree of freedom systems, interpreting dynamic response.

Teaching and Learning Methods: This module will be delivered through lecture sessions aimed at establishing the discipline context, key definitions/concepts, and also at establishing a framework for learning. The lectures will be supported by e-learning using computer-based learning exercises. Through these mechanisms learners will also build upon the fundamental concepts covered in the lectures and start applying new understanding through the tasks and activities provided. Regular formative feedback is built into the weekly contact sessions.

Contact Hours:

On average students will receive 4.5 hours of contact time per week. This will be in a range of formats, including lectures, laboratory practicals, field work, tutorial or computer-based sessions, formative feedback sessions and support via e-mail.

The amount of time spent on activities in this module is:

Activity:

Contact time (lectures/feedback/practical sessions): 36 hours Assimilation and development of knowledge: 84 hours Coursework preparation: 30 hours Total study time: 150 hours

Part 3: Assessment

Component A – Examination. Learning outcomes 1,2 and 4. Demonstration of learning outcomes 1, 2 and 4 is via solving unseen questions in a written examination. This allows the fundamental processes associated with these learning outcomes to be assessed with the assurance the work is individual.

Component B – Report (1000 words). Learning outcome 3. To allow the students to demonstrate learning outcome 3 a coursework task, requiring application of a finite element modelling to an engineering problem is used. The input parameters of the problem can be adjusted allowing for a unique problem for each student. The submission is a concise technical report.

Students work on the above tasks throughout the module and receive regular formative feedback in tutorial sessions.

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	50 %	Online Exam
Report - Component B		50 %	See assessment strategy.
Resit Components	Final Assessment	Element weighting	Description
Resit Components Examination (Online) - Component A			Description Online Exam

Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:							
	Module Learning Outcomes		Reference					
	Use matrix methods to carry out elastic structural analysis							
	Use the stiffness method to carry out elastic structural analysis of truss frames							
	Use the finite element method to model frames and plates to investigate their response to different load conditions							
	Use of single and multi-degree of freedom models to assess the dynam response of structures							
Contact Hours	Independent Study Hours:							
	Independent study/self-guided study	13	114					
	Total Independent Study Hours: 1							
	Scheduled Learning and Teaching Hours:							
	Face-to-face learning	3	36					
	Total Scheduled Learning and Teaching Hours:		36					
	Hours to be allocated	15	150					
	Allocated Hours	150						
Reading List	The reading list for this module can be accessed via the following link:							
	https://uwe.rl.talis.com/modules/ubgmm3-15-3.html							

Part 4: Teaching and Learning Methods

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Civil Engineering [Jan][FT][Northshore][4yrs] MEng 2018-19

Civil and Environmental Engineering [Sep][FT][Frenchay][4yrs] MEng 2018-19

Civil and Environmental Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19