

MODULE SPECIFICATION

Part 1: Information						
Module Title	Energ	y Conservation in the	Built Environment			
Module Code	UBLMMU-30-2		Level	Level 5		
For implementation from	2018-19					
UWE Credit Rating	30		ECTS Credit Rating	15		
Faculty	Faculty of Environment & Technology		Field	Architecture and the Built Environment		
Department FET I		Dept of Architecture & Built Environ				
Contributes towards						
Module type: Stand		dard				
Pre-requisites		None				
Excluded Combinations		Building Physics and Services 2018-19				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description	Part	2:	Descri	ption
---------------------	------	----	--------	-------

Educational Aims: This module aims to teach students the basics of energy conservation in the built environment – buildings and transport – giving students a solid technical basis for the management and policy aspects explored in other modules.

In addition to Learning Outcomes, the educational experience may explore, develop, and practise but not formally discretely assess the following:

The broadening of information literacy with an introduction to a wide range of information types and sources.

Outline Syllabus: Element 1 – Internal Environments, Science and Sustainability: the historical context;

Health and wellbeing in buildings; vernacular environments; air quality; the role of material science; the climate change context; the resource depletion context; the energy security context.

Element 2 – Human Thermal Comfort and Thermal Performance of Structures: Thermal comfort; microclimates; heat loss in buildings; thermal insulation; air-tightness; casual

STUDENT AND ACADEMIC SERVICES
and solar heat gains; thermal mass; passive cooling techniques; natural ventilation; condensation.
Element 3 – Mechanical Heating, Ventilation and Air Conditioning: Space heating systems; mechanical ventilation; comfort cooling; humidity control; heat pumps; heat recovery, community heating.
Element 4 – Transport: National transport policy and climate change; vehicle technology; potential for modal shift to walking, cycling and public transport; behaviour change; transport and spatial planning; aviation and shipping; freight and logistics.
Element 5 – Visual Comfort and Lighting: Fundamentals of light and colour; workings of the eye; daylight in buildings; lamp technologies; luminaire geometry; lighting layouts; lighting control; lighting applications; emergency lighting; way-finding.
Element 6 – Electrical Power and Communications: Electricity; electrical distribution; micro-generation; motors; power quality; IT networks; server rooms; wireless systems; lightning protection.
Element 7 – Boilers and Hot Water: Combustion; stoichiometry; flue gas analysis; condensing boilers; combi-boilers; water cylinders; solar thermal; hot water distribution losses.
Element 8 – Controls – Building Management System: Open and closed loop control; time switches; occupancy sensors; temperature, daylight, humidity and CO2 sensors; interlocks; control strategies.
Note: all elements are not weighted equally in study or assessment time
Teaching and Learning Methods: Contact time including site visits: 72 hours
Assimilation and development of knowledge: 148 hours
Exam preparation: 40 hours
Coursework preparation: 40 hours
Total study time: 300 hours
For directed study students should carry out the learning activities given to them in each element, covering topics from lectures and essential reading sources.
For self-directed study, students should study aspects of the topics they find most interesting, recording their findings in a structured and coherent set of course notes.
Each element of syllabus will involve an introduction of the topics through lecture, when students will receive an explanation of the context of the subject and an indication of the depth to which they are expected to study it. Topics will then be explored further in practical lab-based activities and tours of campus facilities.
Students will be supported in their study with on-line resources including publications, websites, video clips and blackboard resources.

Finally students will be supported in tutorials to analysis issues and solve related problems as required in assessments.

Part 3: Assessment

Summative Assessment

The examination is used to concentrate students' attention on assimilating the factual and conceptual content of the module.

Component A

Exam will contain short answer question to test general knowledge of the subject and apply problem solving skills to typical energy conservation scenarios in the built environment.

Component B

Coursework is used to improve technical report writing while analysing the practical implications of energy conservation in different systems associated with the built environment. Every element of the module will contain a directed piece of coursework that students will be expected to undertake. A selection of this work will then be submitted for assessment.

Formative Feedback

Formative feedback will be given with mock in-class tests using electronic voting, peer review and tutor feedback in tutorials.

First Sit Components	Final Assessment	Element weighting	Description
Portfolio - Component B		50 %	Portfolio (3000 words)
Examination - Component A	\checkmark	50 %	Examination
Resit Components	Final Assessment	Element weighting	Description
Portfolio - Component B		50 %	Portfolio (3000 words)
Examination - Component A	✓	50 %	Examination

	Part 4: Teaching and Learning Methods			
Learning On successful completion of this module stu Outcomes Outcomes		pletion of this module students will be able to:		
		Module Learning Outcomes		
	MO1	Explain the processes by which buildings have typically interacted with their physical environment and how that might differ in a sustainable context		
	MO2	Identify the aspects of environmental physics and building services that impact a building's carbon footprint		
	MO3	Explain the purpose and operation of simple Building Services Systems		
	MO4	Explain the main elements of UK Government policy on transport and climate change, and the main challenges involved in meeting national targets		
	MO5	Discuss the potential for energy and carbon reductions in transport from technological, behavioural and structural policy options		
	MO6	Perform the fundamental calculations associated with thermal comfort, heat balance, heating, cooling and ventilation in buildings, indicating the relevance of the results		

STUDENT AND ACADEMIC SERVICES

Contact Hours		al assessment of the energy conservation ociated with the built environment
	Independent Study Hours:	
	Independent study/self-guided study	228
	Total Indepen	ndent Study Hours: 228
	Scheduled Learning and Teaching Hours:	
	Face-to-face learning	72
	Total Scheduled Learning a	nd Teaching Hours: 72
	Hours to be allocated	300
	Allocated Hours	300
Reading List	The reading list for this module can be accessed https://uwe.rl.talis.com/index.html	via the following link: