

MODULE SPECIFICATION

Part 1: Information						
Module Title	Aero-Propulsion					
Module Code	UFMFW6-15-3		Level	Level 6		
For implementation from	2019-20					
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET Dept of Engin Design & Mathematics					
Module type:	Standard					
Pre-requisites		Fluid Dynamics 2019-20				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Overview: The course aims to provide a basic education in propulsion across all aspects of aerospace.

Educational Aims: See Learning Outcomes.

Outline Syllabus: Linear Momentum Equation and Hydrodynamics Forces.

Engineering Applications: Force required to restrain a Convergent Nozzle, Rocket Engine Thrust,

Turbojet Engine Thrust, Flow Through a Sudden Enlargement, Jet Pump/Ejector/Injector,

Turbofan-Engine Thrust, Reaction Force on a Pipe Bend, Reaction Force on a Pipe Junction,

Flow Through a Cascade of Guidevanes, Jet Impinging on a Flat Plate.

The working of the gas turbine engine and engine power plants.

Turbojet/Turbofan, technical description and development.

Shaft Power Cycles.

Turbojet/Turbofan - Performance, losses.

Heat Transfer and Cooling Blade Cooling Performance.

Combustion, fuel and combustion chemistry; fuel-air mixtures; engine limits

Compressible duct flow: speed of sound; isentropic flow; effects of area change at sub-, transand supersonic Mach numbers; convergent-divergent ducts; nozzle expansion ratios; intake mass flow requirements.

Space propulsion engines including rockets, heat exchangers, ramjets and scramjets.

STUDENT AND ACADEMIC SERVICES

Introduction to Helicopters.

Applicable regulations for certification and flight including FAA, JAR, CAA, and ATA.

Teaching and Learning Methods: Scheduled learning includes lectures, computer tutorials using industry standard software, worked tutorial sessions, demonstration, practical classes and workshop activities.

Independent learning includes hours engaged with essential reading, preparation, assignment preparation and completion.

Contact: 54 hours

Assimilation and skill development: 26 hours

Coursework: 50 hours Exam preparation: 20 hours

Total: 150 hours

Contact hours include workshop time under technician supervision.

Part 3: Assessment

Component A is a two hour exam.

Component B contains an assessment of modelling an engine through the various stages of its operation along with basic combustion modelling experience. This will be through numerical simulation supported by experimental results.

First Sit Components	Final Assessment	Element weighting	Description
Project - Component B		50 %	Project/case study
Examination - Component A	√	50 %	Examination (2 hrs)
Resit Components	Final Assessment	Element weighting	Description
Project - Component B		FO 0/	Project/case study
Troject components		50 %	,

	Part 4: Teaching and Learning Methods				
Learning Outcomes	On successful completion of this module students will achieve the following	owing learning	outcomes:		
	Module Learning Outcomes				
	Show a detailed knowledge of the assessment and modelling of a propulsion system or flow situation				
	Understand the nature of the thermodynamic and chemical changes undergone by a fluid in each process making up a thermodynamic cycle				
	Calculate the changes in fluid properties at specific points around a thermodynamic cycle and, from these, estimate engine performance				
	Estimate the airscrew performance and output from basic flow measurements and aerofoil data				
	Understand and interpret the forms of engine documentation and relapresentation methods	ated data	MO5		
Contact Hours	Independent Study Hours:				
	Independent study/self-guided study		6		
	Total Independent Study Hours:	9(6		
	Scheduled Learning and Teaching Hours:				
	Face-to-face learning 54				
	Total Scheduled Learning and Teaching Hours: 54		4		
	Hours to be allocated 15				
	Allocated Hours 150				
Reading List	The reading list for this module can be accessed via the following link:				
	https://uwe.rl.talis.com/modules/ufmfw6-15-3.html				

Part 5: Contributes Towards
This module contributes towards the following programmes of study: