

MODULE SPECIFICATION

Part 1: Information						
Module Title	Applied Aerodynamics					
Module Code	UFMFH7-15-3		Level	Level 6		
For implementation from	2020-21					
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET Dept of Engin Design & Mathematics					
Module Type:	Stand	Standard				
Pre-requisites		Flight 2019-20, Fundamental Aerodynamics 2019-20				
Excluded Combinations		None				
Co-requisites		None				
Module Entry Requirements		None				
PSRB Requirements		None				

Part 2: Description

Overview: The module covers intermediate theoretical and practical aspects of aerodynamics

Educational Aims: See Learning Outcomes.

Outline Syllabus: This module builds on the fundamentals of fluid dynamics at lower levels with the following concepts:-

- Revision of fundamentals of viscous flows: conservation laws, laminar boundary layer and turbulent boundary layer

- Momentum methods

- Pressure gradient and boundary layer separation.

- Flow transition: boundary layer transition process, prediction of the onset of transition.

- Compressible flow: governing equations for normal and oblique shock waves, expansion waves,

shock interactions, and application to lifting surfaces, diffusers, nozzles and engine intakes. - Low order numerical methods

- Use of the wind tunnel for internal and external aerodynamics

STUDENT AND ACADEMIC SERVICES

Teaching and Learning Methods: Lectures/lectorials to convey concepts and principles Tutorials and self-paced sessions to reinforce concepts and principles Laboratory experiments and practical tasks designed to assimilate concepts and principles in a kinesthetic way and promote self-learning

Part 3: Assessment

Component A is a two hour examination that will assess acquisition of skills, knowledge, concepts and principles in lectures, tutorials and experiments under controlled conditions

Component B ensures that students are able to demonstrate their understanding of underpinning principles within a practical or simulated practical environment where a portfolio of practical skills are assessed for example wind tunnel tests or coding of flow field prediction methods. The practical environment is intended to help assimilate principles and concepts in a kinesthetic manner and provide an opportunity for reflection of practice and theory

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A	✓	50 %	Examination on Aerodynamics (2 hrs)
Practical Skills Assessment - Component B		50 %	Assignment in aerodynamics
Resit Components	Final Assessment	Element weighting	Description
Examination - Component A	✓	50 %	Examination on aerodynamics (2 hrs)
Practical Skills Assessment - Component B		50 %	Assignment in aerodynamics

Part 4: Teaching and Learning Methods					
Learning Outcomes	On successful completion of this module students will achieve the following	learning outcomes:			
	Module Learning Outcomes	Reference			
	Use relevant theory to predict boundary layer development, flow separatio transition and supersonic flow properties.	n, MO1			
	Apply momentum methods to predict aerodynamic loads.	MO2			
	Demonstrate appropriate expertise in the use of ground based experiment facilities to acquire and process suitable data, and analyse flow simulation				
	Demonstrate key transferable skills in problem formulation in aerodynamic applications, decision making, self-management and communication				
Contact Hours	Independent Study Hours:				
	Independent study/self-guided study	114			
	Total Independent Study Hours:	114			

	Scheduled Learning and Teaching Hours:	
	Face-to-face learning	36
	Total Scheduled Learning and Teaching Hours:	36
	Hours to be allocated	150
	Allocated Hours	150
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmfh7-15-3.html	

Part 5: Contributes Towards
This module contributes towards the following programmes of study:
Aerospace Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19
Aerospace Engineering (Systems) [Sep][FT][Frenchay][4yrs] MEng 2018-19
Aerospace Engineering with Pilot Studies [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19
Aerospace Engineering with Pilot Studies [Sep][FT][Frenchay][4yrs] MEng 2018-19
Aerospace Engineering with Pilot Studies (Design) [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19
Aerospace Engineering with Pilot Studies (Systems) [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19
Aerospace Engineering with Pilot Studies (Design) [Sep][FT][Frenchay][4yrs] MEng 2018-19
Aerospace Engineering with Pilot Studies (Systems) [Sep][FT][Frenchay][4yrs] MEng 2018-19
Aerospace Engineering (Design) [Sep][FT][Frenchay][4yrs] MEng 2018-19
Aerospace Engineering [Sep][FT][Frenchay][4yrs] MEng 2018-19
Aerospace Engineering (Design) [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19
Aerospace Engineering (Systems) [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19