

MODULE SPECIFICATION

Part 1: Information						
Module Title	Applied Aerodynamics					
Module Code	UFMFH7-15-3		Level	Level 6		
For implementation from	2019-20					
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET [FET Dept of Engin Design & Mathematics				
Module type:	Stand	Standard				
Pre-requisites		Aerodynamics and Flight 2019-20				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Overview: The module covers theoretical and practical aspects of aerodynamics and dynamic flight stability and flight test.

Educational Aims: See Learning Outcomes.

Outline Syllabus: This module will cover:

Fundamentals of viscous flows: conservation laws, laminar boundary layer and turbulent boundary layer.

Pressure gradient and boundary layer separation.

Flow transition: boundary layer transition process, prediction of the onset of transition.

Compressible flow: governing equations for normal and oblique shock waves, expansion waves,

shock interaction, and application to diffusers, nozzles and engine intakes.

Hypersonic Flow: Qualitative Aspects.

Use of the supersonic wind tunnel for external aerodynamics.

Equations of motion of an aircraft: solutions in longitudinal and lateral degrees of freedom.

Longitudinal dynamic stability: phugoid and short period oscillation; mathematical description of each mode; magnitude and effects of damping; contribution(s) of aircraft layout.

Lateral dynamic stability: spiral dive, Dutch roll, Roll subsidence; mathematical description of each mode; magnitude and effects of damping; contribution(s) of aircraft layout.

Response Transfer Functions, Flight Control System.

Weight and balance; in-flight measurements; post-flight calculations; comparison with theory; trends from multiple flights and tests.

Teaching and Learning Methods: See Outline Syllabus and Assessment.

Part 3: Assessment

Component A is a two hour examination that will test understanding of learning outcomes relating to analytical skills on aerodynamics and flight dynamics under controlled conditions.

Component B ensures that students are able to demonstrate their understanding of underpinning principles within a practical or simulated practical environment where a portfolio of practical skills are assessed for flight stability and flight testing.

First Sit Components	Final Assessment	Element weighting	Description
Practical Skills Assessment - Component B		50 %	Assignment in flight testing
Examination - Component A	\checkmark	50 %	Examination on Aerodynamics (2 hrs)
Resit Components	Final Assessment	Element weighting	Description
Practical Skills Assessment - Component B		50 %	Assignment in flight testing
Examination - Component A	\checkmark	50 %	Examination on aerodynamics (2 hrs)

	Part 4: Teaching and Learning Methods		
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:
	Module Learning Outcomes		Reference
	Understand and predict conservation laws, boundary layer development, flow separation, transition and supersonic flow properties		MO1
	Use numerical models to produce simulations of aircraft motion and aerodynamic flows		MO2
	Operate a flight simulation package and use it to assess an aeroplane's stability		MO3
	Learn to flight test an aircraft		MO4
	Demonstrate key transferable skills in problem formulation and decisi self-management and communication	on making,	MO5
Contact Hours	Independent Study Hours:		
	Independent study/self-guided study	1:	14
	Total Independent Study Hours:	1:	14

	Scheduled Learning and Teaching Hours:	
	Face-to-face learning	36
	Total Scheduled Learning and Teaching Hours:	36
		150
		150
	Allocated Hours	150
Reading List	The reading list for this module can be accessed via the following link:	
	https://uwe.rl.talis.com/modules/ufmfh7-15-3.html	

Part 5: Contributes Towards
This module contributes towards the following programmes of study: