

MODULE SPECIFICATION

Part 1: Information								
Module Title	Aerodynamics and Flight							
Module Code	UFMFY6-30-2		Level	Level 5				
For implementation from	2019-20							
UWE Credit Rating	30		ECTS Credit Rating	15				
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics				
Department	FET [Dept of Engin Design & Mathematics						
Module type:	Stand	andard						
Pre-requisites		Engineering Mathematics 2019-20						
Excluded Combinations		None						
Co- requisites		None						
Module Entry requirements		None						

Part 2: Description

Overview: This module covers theoretical and practical aspects of aerodynamics, performance, static stability and orbital mechanics.

Educational Aims: See Learning Outcomes

Outline Syllabus: This module will cover:

Elements of Aeroplane Performance: Equations of Motion, Thrust and Power required for Level, Unaccelerated Flight, Thrust and Power available and maximum velocity, Altitude Effect on Power required and available, Rate of Climb, Gliding Flight, Time to Climb, Range and Endurance - Breguet Equation, Takeoff and Landing Performances.

Principles of Stability and Control: Static Stability, Dynamic Stability.

Static Stability: Longitudinal Stability, Neutral Point, Static Margin, Calculation of Elevator Angle to Trim, Stick-fixed versus Stick-free Static stability, Elevator Hinge Moment, Lateral Stability.

Subsonic Flow over Aerofoils and wings: flow field characteristics; influential flow field and shape parameters; stall and separation; boundary layer flows.

STUDENT AND ACADEMIC SERVICES

Potential theory, 2D aerofoil and 3D wing theory including vortex systems.

Transonic and Supersonic Flows over aerofoils: compressible flows, shock waves.

High lift profiles and devices, effects of leading and trailing edges.

Introduction to computational fluid dynamics (CFD): relevant equations, principles of discretisation, turbulence models, mesh generation, boundary conditions, accuracy and convergence, post-processing, validation and assessment of results.

Teaching and Learning Methods: See Assessment

Part 3: Assessment

Component A, a two hour exam on aerodynamics to test student understanding of theoretical knowledge and calculation skills in controlled conditions.

Component B contains an assessment portfolio demonstrating key skills. It reinforces theory by giving students practical experience in applying the theoretical principles in a real context. It includes:

Aerodynamics assignment including computational fluid dynamics (CFD), and physical testing of flows,

Performance, stability assignment,

Basic spacecraft trajectories and manoeuvres.

First Sit Components	Final Assessment	Element weighting	Description
Portfolio - Component B		75.0/	Portfolio
Examination Component A		/5 %	Examination (2 hrc)
	~	25 %	
Resit Components	Final Assessment	Element weighting	Description
Portfolio - Component B		75 %	Portfolio
Examination - Component A	~	25 %	Examination (2 hrs)

Part 4: Teaching and Learning Methods					
On successful completion of this module students will achieve the following learning outcomes:					
Reference					
ows. MO1					
n of MO2					
sic MO3					
ing, MO4					
MO5					

Contact Hours	Independent Study Hours:						
	Independent study/self-guided study	228					
	Total Independent Study Hours:	228					
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	72					
	Total Scheduled Learning and Teaching Hours:	72					
	Hours to be allocated	300					
	Allocated Hours	300					
Reading List	The reading list for this module can be accessed via the following link:						
	https://uwe.rl.talis.com/modules/ufmfy6-30-2.html						

Part 5: Contributes Towards This module contributes towards the following programmes of study: Aerospace Engineering [Sep][SW][Frenchay][5yrs] MEng 2018-19 Aerospace Engineering (Design) [Sep][SW][Frenchay][5yrs] MEng 2018-19 Aerospace Engineering (Manufacturing) [Sep][FT][Frenchay][4yrs] MEng 2018-19 Aerospace Engineering (Manufacturing) [Sep][SW][Frenchay][5yrs] MEng 2018-19 Aerospace Engineering (Systems) [Sep][SW][Frenchay][5yrs] MEng 2018-19 Aerospace Engineering [Sep][SW][Frenchay][4yrs] BEng (Hons) 2018-19 Aerospace Engineering (Design) [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19 Aerospace Engineering (Design) [Sep][SW][Frenchay][4yrs] BEng (Hons) 2018-19 Aerospace Engineering (Manufacturing) [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19 Aerospace Engineering (Manufacturing) [Sep][SW][Frenchay][4yrs] BEng (Hons) 2018-19 Aerospace Engineering (Systems) [Sep][SW][Frenchay][4yrs] BEng (Hons) 2018-19 Aerospace Engineering (Design) [Sep][FT][Frenchay][4yrs] MEng 2018-19 Aerospace Engineering (Systems) {Foundation} [Sep][SW][Frenchay][5yrs] BEng (Hons) 2018-19 Aerospace Engineering {Foundation} [Sep][SW][Frenchay][5yrs] BEng (Hons) 2018-19