

MODULE SPECIFICATION

Part 1: Information								
Module Title	Aerodynamics and Flight							
Module Code	UFMFY6-30-2		Level	Level 5				
For implementation from	2018-	2018-19						
UWE Credit Rating	30		ECTS Credit Rating	15				
Faculty		ty of Environment & hology	Field	Engineering, Design and Mathematics				
Department	FET Dept of Engin Design & Mathematics							
Contributes towards								
Module type:	Stanc	Standard						
Pre-requisites		Engineering Mathematics 2018-19, Introduction to Aeronautics 2018-19						
Excluded Combinations		None						
Co- requisites		None						
Module Entry requirements		None						

Part 2: Description

Overview: This module covers theoretical and practical aspects of aerodynamics, performance, static stability and orbital mechanics.

Educational Aims: See Learning Outcomes

Outline Syllabus: This module will cover:

Elements of Aeroplane Performance: Equations of Motion, Thrust and Power required for Level, Unaccelerated Flight, Thrust and Power available and maximum velocity, Altitude Effect on Power required and available, Rate of Climb, Gliding Flight, Time to Climb, Range and Endurance - Breguet Equation, Takeoff and Landing Performances.

Principles of Stability and Control: Static Stability, Dynamic Stability.

Static Stability: Longitudinal Stability, Neutral Point, Static Margin, Calculation of Elevator Angle to Trim, Stick-fixed versus Stick-free Static stability, Elevator Hinge Moment, Lateral Stability.

STUDENT AND ACADEMIC SERVICES

Subsonic Flow over Aerofoils and wings: flow field characteristics; influential flow field and shape parameters; stall and separation; boundary layer flows.

Potential theory, 2D aerofoil and 3D wing theory including vortex systems.

Transonic and Supersonic Flows over aerofoils: compressible flows, shock waves.

High lift profiles and devices, effects of leading and trailing edges.

Introduction to computational fluid dynamics (CFD): relevant equations, principles of discretisation, turbulence models, mesh generation, boundary conditions, accuracy and convergence, post-processing, validation and assessment of results.

Teaching and Learning Methods: See Assessment

Part 3: Assessment

Component A, a two hour exam on aerodynamics to test student understanding of theoretical knowledge and calculation skills in controlled conditions.

Component B contains an assessment portfolio demonstrating key skills. It reinforces theory by giving students practical experience in applying the theoretical principles in a real context. It includes:

Aerodynamics assignment including computational fluid dynamics (CFD), and physical testing of flows,

Performance, stability assignment,

Basic spacecraft trajectories and manoeuvres.

First Sit Components	Final Assessment	Element weighting	Description
Portfolio - Component B		75 %	Portfolio
Examination - Component A	\checkmark	25 %	Examination (2 hrs)
Resit Components	Final Assessment	Element weighting	Description
Portfolio - Component B		75 %	Portfolio
Examination - Component A	\checkmark	25 %	Examination (2 hrs)

	Part 4:	Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will be able to:							
		Module Learning Outcomes						
	MO1	ubsonic, transonic and						
	MO2	and design of aircraft and spacecraft.	nowledge in flight theory for performance, stability rcraft and spacecraft.					
	MO3	Use of numerical models to produce simulations of aerodynamic flows for basic geometries in different flow regimes.						
	MO4	Demonstrate key transferable skills in problem formulation and decision making, self-management and communication.						
	MO5 Demonstrate an awareness of, and access to professional literature.							
Contact Hours	Contact Hours							
, louio								
	Independent Study Hours:							
	Independent study,	228						
		Total Independent Study Hours:	228					
	Scheduled Learning and Teaching Hours:							
	Face-to-face learnin	72						
	Total Sc	72						
	Hours to be allocated		300					
	Allocated Hours		300					
Reading List	The reading list for this modu	le can be accessed via the following link:						