

MODULE SPECIFICATION

Part 1: Information							
Module Title	Comp	Complex Variables					
Module Code	UFMFT7-15-2		Level	Level 5			
For implementation from	2020-	2020-21					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [Dept of Engin Design & Mathematics					
Module type:	Stand	Indard					
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: The study of complex variables provides a powerful tool for solving a wide array of problems arising in applications. We investigate the nature of functions in the complex plane and focus on the integration of these functions along curves in the complex plane. The analytical nature of complex functions is explored and from this, we state and prove the main theorems such as Cauchy's theorem and the Cauchy Integral Formula. On the way we prove the Fundamental Theorem of Algebra and evaluate real integrals which seem impossible by any other method.

Educational Aims: See Learning Outcomes.

Outline Syllabus: Review of complex numbers: representation, Argand diagram, De Moivre's Theorem.

Functions of a Complex Variable: Definitions, power series, analytic functions, limits and derivatives of functions of a complex variable, Cauchy-Riemann equations. Ideal fluids.

Complex integration: Contour integration, Cauchy's theorem, Cauchy's integral formula. Taylor series and Laurent series. Singularities, residues and the residue theorem. Applications such as the evaluation of real, definite integrals and principal value integrals.

STUDENT AND ACADEMIC SERVICES

Teaching and Learning Methods: The module is delivered by means of lectures and tutorials or workshops. Complex Variables theory requires careful presentation and the notes are written to be self-contained. To prepare for assessment, students will be expected to prepare solutions to pre-set questions from worksheets. The solutions will then be discussed in detail in the tutorial.

Scheduled teaching hours will take the form of:

(i) Whole group lectures, used to deliver new material and to consolidate previous material

(ii) Small-group tutorials, with activities designed to enhance the understanding of the material delivered in the lectures and to apply the skills and knowledge learned from the lectures.

Scheduled classes: 37.5 hours Assimilation and development of knowledge: 75 hours Coursework preparation: 18 hours Examination preparation: 19.5 hours Total: 150 Hours

Part 3: Assessment

The examination is summative and assesses the students' understanding of concepts and techniques, and their ability to apply them in applications.

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	100 %	Online Written examination (Final assessment)
Resit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	100 %	Online Written examination

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:					
	Module Learning Outcomes	Reference				
	Define and explain complex numbers in a variety of ways	MO1				
	Explain the meaning of an analytic function in the complex plane and be able to classify whether or not functions are analytic	MO2				
	Explain theorems such as Cauchy's theorem and the Cauchy integral formula and use these theorems to derive further results, such as the Fundamental Theorem of Algebra					
	Integrate and evaluate a complex function along a curve in the complex plane and evaluate real integrals using the sum of residues	MO4				
Contact Hours	Independent Study Hours:					
	Independent study/self-guided study 12	13				

	Total Independent Study Hours: Scheduled Learning and Teaching Hours:	113
	Face-to-face learning	37
	Total Scheduled Learning and Teaching Hours:	37
	Hours to be allocated	150
	Allocated Hours	150
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmft7-15-2.html	

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mathematics [Sep][FT][Frenchay][3yrs] BSc (Hons) 2019-20

Mathematics [Sep][SW][Frenchay][4yrs] BSc (Hons) 2019-20

Mathematics {Foundation} [Sep][SW][Frenchay][5yrs] BSc (Hons) 2018-19

Mathematics {Foundation} [Sep][FT][Frenchay][4yrs] BSc (Hons) 2018-19