

MODULE SPECIFICATION

Part 1: Information						
Module Title	Codir	Coding Theory and Applications				
Module Code	UFMFQ7-15-2		Level	Level 5		
For implementation from	2020-	21				
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET [Dept of Engin Design & Mathematics				
Module type:	Stanc	tandard				
Pre-requisites		None				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Educational Aims: In this module you will find out how concepts from abstract algebra can be applied to real-life problems such as how to send secret messages, how to reconstruct information which has been damaged and how to store and transmit data efficiently.

You will look at applications of group theory, finite fields and linear algebra to these problems.

In addition to the Learning Outcomes, the educational experience may explore, develop, and practise but not formally discretely assess the following:

Use of a computer algebra package to analyse and solve problems.

Outline Syllabus: Introduction:

What we mean by 'coding theory': coding for compression, errorcorrection, secrecy

Prefix-free codes

Optimal codes, entropy and uncertainty

Noisy channels and the problem of reliable communication

Review of concepts from algebra: groups, finite fields, linear algebra, number theory.

STUDENT AND ACADEMIC SERVICES

Data compression:

Block codes/ stream codes,

Algorithms, eg Huffman coding, LZW

Error-correcting codes:

Linear codes, Hamming codes,

Cyclic codes

Applications to barcoding

Cryptography:

Symmetric cryptosystems: pencil and paper codes, one time pad, DES, AES

Public key cryptosystems: RSA, El Gamal, Diffie-Hellman, Elliptic Curve cryptography

Teaching and Learning Methods: Scheduled learning will include lectures/seminars, where students will discuss essential reading, and practical sessions which may include computer-based tutorials.

Independent learning will include hours engaged with essential reading, assignment preparation and completion.

Scheduled teaching hours: 36 Reading and assimilation time: 54

Coursework: 60 Total: 150 hours

Part 3: Assessment

Component A consists of an assignment consisting of problems of an extended nature which require analysis and exploration to solve. It will also include a short report, designed to introduce students to literature review, analysis of texts and referencing in preparation for undertaking a final year project.

First Sit Components	Final Assessment	Element weighting	Description
Written Assignment - Component A		100 %	Assignment
Resit Components	Final Assessment	Element weighting	Description
Written Assignment - Component A		100 %	Assignment

	rait 4. Teaching and Learning Methods					
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:					
	Module Learning Outcomes	Reference				
	Define mathematical concepts and state theorems precisely, and construct rigorous mathematical proofs	MO1				
	Use appropriate notation, logic, concepts and techniques to communicate mathematical arguments clearly and effectively	MO2				
	Select and apply appropriate techniques from abstract algebra to solve problems in coding theory	MO3				
	Undertake short literature reviews and use appropriate research and reporting techniques, such as referencing materials, library search	MO4				

Part 4: Teaching and Learning Methods

STUDENT AND ACADEMIC SERVICES

Contact Hours	Independent Study Hours:					
	Independent study/self-guided study	114				
	Total Independent Study Hours:	114				
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning	36				
	Total Scheduled Learning and Teaching Hours:	36				
	Hours to be allocated	150				
	Allocated Hours	150				
Reading List	The reading list for this module can be accessed via the following link:					
	https://uwe.rl.talis.com/modules/ufmfq7-15-2.html					

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mathematics [Sep][FT][Frenchay][3yrs] BSc (Hons) 2019-20

Mathematics [Sep][SW][Frenchay][4yrs] BSc (Hons) 2019-20

Mathematics (Foundation) [Sep][SW][Frenchay][5yrs] BSc (Hons) 2018-19

Mathematics {Foundation} [Sep][FT][Frenchay][4yrs] BSc (Hons) 2018-19