

MODULE SPECIFICATION

Part 1: Information							
Module Title	Computational Methods						
Module Code	UFMFU7-15-3		Level	Level 6			
For implementation from	2019-	20					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [Dept of Engin Design & Mathematics					
Module type:	Stand	ndard					
Pre-requisites		Stress Analysis 2019-20					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: Two of the main modern mechanical engineering tools are introduced in this module which is supported by lectures and practical computer practice.

Educational Aims: See Learning Outcomes.

Outline Syllabus: FEA:

Introduction to Finite Element Analysis: overview of FEA applications, nodes, elements, meshes, stiffness matrix, and boundary conditions - loads and restraints.

Practical modelling techniques: e.g: techniques, planning, pre-processing, model solution, post processing, symmetry, convergence tests, boundary conditions, element types/selection, co-ordinate systems, mesh creation.

Elementary elastic plastic analysis.

CFD:

Introduction to CFD and meshing theories including discretisation from the fluid theory, turbulence models, mesh generation and error analysis.

STUDENT AND ACADEMIC SERVICES

Practical modelling using an industry standard CFD package exploring mesh independency, the use of different turbulence models and the importance of convergence and validation of results.

Teaching and Learning Methods: This module is supported by small computer practical sessions. Study time outside of contact hours will be spent on going through FEA and CFD exercises and example problems.

Scheduled learning includes lectures and computer practical sessions. Around half of the practical sessions are spent working through CFD/FEA exercises. The other half are spent working on the coursework assignments.

Independent learning includes hours engaged with the software, assignment preparation and completion.

Contact: 36 hours

Assimilation and skill development: 60 hours

Coursework: 36 hours Exam preparation: 18 hours

Total: 150 hours

Part 3: Assessment

Component A: Exam

Assessed via end of semester Exam to assess the students understanding of concepts and techniques: part 1 CFD, and part 2 FEA.

Component B: Coursework

Assessed via end of semester through two pieces of coursework, the first in CFD and the second in FEA. Each coursework assignment is based on simulating a simple fluid dynamics/solid mechanics problem and writing a brief report detailing the modelling process and analysing the results. Both elements are max 8 pages.

First Sit Components	Final Assessment	Element weighting	Description
Report - Component B		38 %	Coursework 1 CFD (max 8 pages)
Report - Component B		37 %	Coursework 2 FEA (max 8 pages)
Examination - Component A	✓	25 %	Exam (2 hours)
Resit Components	Final Assessment	Element weighting	Description
Report - Component B		75 %	Coursework CFD/FEA (max 8 pages)
Examination - Component A	✓	25 %	Examination 2 hours

	Part 4: Teaching and Learning Methods							
Learning Outcomes	On successful completion of this module students will achieve the following	owing learning	outcomes:					
	Module Learning Outcomes		Reference					
	Show a detailed knowledge and understanding of the theoretical background on which Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) are based and the iterative nature of the design/analysis process							
	Show a detailed knowledge of how FEA and CFD modelling techniquused to analyse engineering components	ies can be	MO2					
	Demonstrate subject specific skills with respect to undertake analysis integrated CAD environment with an understanding of the underlying and their computing implementations		МОЗ					
	Demonstrate usage of the pre-processing, solve and post-processing industrial standard CFD and FEA codes, including mesh generation a validation	MO4						
Contact Hours	Independent Study Hours:							
	Independent study/self-guided study 1							
	Total Independent Study Hours:	1	114					
	Scheduled Learning and Teaching Hours:							
	Face-to-face learning	36						
	Total Scheduled Learning and Teaching Hours:	3	36					
	Hours to be allocated	150						
	Allocated Hours	150						
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmfu7-15-3.html							

Part 5: Contributes Towards	
This module contributes towards the following programmes of study:	