

MODULE SPECIFICATION

Part 1: Information							
Module Title	Communications						
Module Code	UFMFS7-15-3		Level	Level 6			
For implementation from	2020-21						
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Facul Techi	ty of Environment & nology	Field	Engineering, Design and Mathematics			
Department	FET I	Dept of Engin Design & Mathematics					
Module type:	Stand	ndard					
Pre-requisites		Mathematics for Signals and Control 2020-21					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: Pre-requisites: Students must take UFMFL9-15-2 Maths for Signals and Control OR Equivalent

Educational Aims: See Learning Outcomes.

In addition to Learning Outcomes, the educational experience may explore, develop, and practise but not formally discretely assess the following:

Problem formulation and decision making

Self-management skills

Working with others

Outline Syllabus: The syllabus includes:

Information content of signals, Transmission of information, and Hartley and Shannon's Law and its applications.

Analogue CW modulation techniques: DSB, AM, SSB, VSB, Angle Modulation, generation,

demodulation and applications, Comparison including SNR performance, Super-heterodyne principle for reception

PCM: A/D conversion, sampling (anti-aliasing filter) and encoding, quantisation noise, linear and non-linear noise, D/A conversion.

Baseband data signals: bit rate/bandwidth relationship, ISI and I diagram, error probability estimation, source, error and line coding, regeneration.

Digital CW modulation: forms, spectra and bandwidth in terms of bit rate, modems, applications

Teaching and Learning Methods: The module delivers material on analogue and digital communication systems. Concepts and the scope of a topic will be introduced in lectures. These will be supported by directed reading and simulation laboratory based work. The lab sessions will enhance the understanding of students of real-world applications of the material delivered in the module. The students will learn through applying a variety of analysis methods, mathematical and simulation tools to design communication systems. Relevant ethical issues will be highlighted and students will be encouraged to consider these further through directed reading.

Contact Hours:

Contact: 36 hours

Assimilation and skill development: 66 hours

Undertaking Coursework: 24 hours

Exam preparation: 24 hours

Total: 150 hours

Part 3: Assessment

There will be a final exam set at the end of the term and a total of 50% marks will be contributed from this element (A). The coursework (element B) is numerical-type/mini-research-based work. Element B will contribute 50% marks to the final marks of the module. In the resit run element B will be an individual work assignment and the remaining part of the module assessment will be same as set in the first run.

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	\checkmark	50 %	Online Exam (3 hours)
Written Assignment - Component B		50 %	Coursework assignment
Resit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	50 %	Online Exam (3 hours)
Written Assignment - Component B		50 %	Coursework assignment

_earning Dutcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:		
	Module Learning Outcomes		Reference		
	The limitations of telecommunication channels from an information the	eoretic	MO1		
	Design principles of analogue and digital telecommunications modula techniques and noise in both digital and analogue systems	unications modulation			
	Design confidently a simulation model of telecommunication system				
	Participate confidently in testing of telecommunication systems		MO4		
	Describe, analyse and evaluate the commonly used modulation techn employed in telecommunication systems	iques	MO5		
	Examine the signal to noise characteristics of different modulation tec	hniques	MO6		
	Awareness of professional literature				
Contact Iours	Independent Study Hours:				
	Independent study/self-guided study	1	114		
	Total Independent Study Hours:	114			
	Scheduled Learning and Teaching Hours:				
	Face-to-face learning	36			
	Total Scheduled Learning and Teaching Hours:	36 150			
	Hours to be allocated				
	Allocated Hours	1	150		
leading ist	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmfs7-15-3.html				

Part 4: Teaching and Learning Methods

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Electronic and Computer Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19

Electronic Engineering [Sep][FT][Frenchay][4yrs] MEng 2018-19

Electronic Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19

Electronic and Computer Engineering [Sep][SW][Frenchay][4yrs] BEng (Hons) 2018-19

Electronic and Computer Engineering [Sep][PT][GlosColl][5yrs] BEng (Hons) 2018-19

Electronic and Computer Engineering {Apprenticeship} [Sep][PT][GlosColl][5yrs] BEng (Hons) 2018-19