

MODULE SPECIFICATION

Part 1: Information							
Module Title	Composite Engineering						
Module Code	UFMFU6-15-3		Level	Level 6			
For implementation from	2020-	-21					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [Dept of Engin Design & Mathematics					
Module type:	Stand	Standard					
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: The course aims to provide a rounded understanding of composite engineering (design, manufacture and performance) so that students are competent with the subject when they work in industry.

Educational Aims: See Learning Outcomes

Outline Syllabus: Classification and structure of composite materials, composition and structural relationships.

Matrix materials: thermoplastic and thermosetting polymer, ceramic and metallic.

Reinforcing materials: fibres and particulates, including carbon, glass, aramid, boron, metallic and ceramic.

Fabric materials: woven, stitched, chopped mats and 3D fabrics.

Core materials: honeycombs and foams.

Joining of composite materials: bonded and bolted joints.

Manufacturing processes: main methods, influence on material properties, quality, volumes and cost.

Design for manufacture and assembly.

Calculation of physical and mechanical properties: rule of mixtures, Hart-Smith, simplified classical laminate analysis method.

Design of composite structures: fundamental principles, design guidelines, balance, symmetry, thickness law.

Testing of composite materials: reasons for importance, destructive and nondestructive methods.

Performance of composite structures: tension, compression, bending, shear, impact toughness, fatigue, failure criterion.

Sustainability and recycling of composites: natural fibres and matrices, reduced weight, conflicts.

Teaching and Learning Methods: Contact: 36 hours

Assimilation and development of knowledge: 75 hours

Problem solving: 11 hours

Examination preparation: 28 hours

Total: 150 hours

Large group lecture supported by laboratory sessions. Study time outside of contact hours will be spent on going through exercises and example problems.

Scheduled learning: lectures and a laboratory based design, manufacture, analyse and test learning cycle project.

Independent learning: essential reading, preparation, e-learning activity and assessment, assignment preparation and completion.

Part 3: Assessment

Component A: Computer based tests assess competency and breadth of understanding of composite materials.

Component B: The coursework is both summative and formative.

The assignment provides the students with the opportunity to apply composite theory, develop a hands-on understanding of the materials and manufacturing process and test their understanding of the course material through an applied learning cycle.

First Sit Components	Final Assessment	Element weighting	Description
Online Assignment - Component A		25 %	E-learning assessment on composite materials
Portfolio - Component B		75 %	Assignment on design, manufacture and and test of composites

STUDENT AND ACADEMIC SERVICES

Resit Components	Final Assessment	Element weighting	Description
Online Assignment - Component A	~	25 %	E-assessment
Portfolio - Component B		75 %	Assignment on design, manufacture and test of composites

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:			
	Module Learning Outcomes					
	Justify the selection of optimum materials for particular applications					
	Critically analyse the inter-relationship between manufacturing process, material properties, quality and cost					
	Design optimum solutions with composite materials					
	Calculate the physical and mechanical properties of composite materials and justify their advantages over metallic solutions Appraise the performance and discuss the key conflicts with composite materials with regard to sustainability and recyclability					
Contact Hours	Independent Study Hours:					
	Independent study/self-guided study 1					
	Total Independent Study Hours: 11		14			
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning	6				
	Total Scheduled Learning and Teaching Hours:	36				
	Hours to be allocated 1		50			
	Allocated Hours	50				
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmfu6-15-3.html					

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mechanical Engineering with Manufacturing {Apprenticeship} [Sep][PT][Frenchay][4yrs] BEng (Hons) 2018-19

Automotive Engineering [Sep][FT][Frenchay][4yrs] MEng 2018-19

Automotive Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19

Mechanical Engineering [Sep][FT][Frenchay][4yrs] MEng 2018-19

Mechanical Engineering [Sep][FT][Frenchay][3yrs] BEng 2018-19

Mechanical Engineering with Manufacturing [Sep][PT][Frenchay][4yrs] BEng (Hons) 2018-19

Mechanical Engineering with Manufacturing {Apprenticeship} [Sep][PT][UCW][4yrs] BEng (Hons) 2018-19

Mechanical Engineering with Manufacturing {Apprenticeship} [Sep][PT][COBC][4yrs] BEng (Hons) 2018-19

Mechanical Engineering with Manufacturing {Apprenticeship} [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19