

MODULE SPECIFICATION

Part 1: Information						
Module Title	Data, Schemas and Applications					
Module Code	UFCFV4-30-2		Level	Level 5		
For implementation from	2019-20					
UWE Credit Rating	30		ECTS Credit Rating	15		
Faculty	Faculty of Environment & Technology		Field	Computer Science and Creative Technologies		
Department	FET [T Dept of Computer Sci & Creative Tech				
Module type:	Stand	Standard				
Pre-requisites		Web Programming 2019-20				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Educational Aims: In addition to the learning outcomes, the educational experience may explore, develop, and practise but not formally discretely assess the following:

Team working and the delegation of responsibility;

Self-study of programming and data manipulation languages.

Outline Syllabus: Background. The need to store, transform, locate and present data of many forms (numeric, textual, relational, graphical, visual and auditory). Unstructured text through semi-structured networks to homogeneous relational and non-relational structures. Application areas such as personal, corporate, public and collaborative data bases.

Data Schemas. Separation/Composition of data, schema (including constraints) and meta data and namespaces. Languages for describing schemas - UML models and SQL DDL for tables, data structure diagrams and XML Schema for hierarchical structures. Composition, types and sub-types and inheritance. Data schemas for typical problems.

Data Manipulation. Standard SQL for relational database management systems (RDBMS) such as MySQL for creation, retrieval, updating and deletion operations. XSLT for XML transformation

and JavaScript/PHP for DOM manipulation .

Web service and communication standards. Application Programming Interfaces (APIs). RSS,ATOM and XML/JSON generating web services. Representational Sate Transfer (REST). Using data from external services and analysing, reformatting and re-presenting this data. Metadata design, generation and use in the context of the Semantic Web using RDF and SPARQL.

Scripting technologies and presentation. Fundamental principles of software architecture. Serverside processing with PHP including functional programming and MySQL/XML data manipulation. Client side processing with JavaScript and JSON.

Documentation, technical design and security. Documenting schemas, data structures and interactions. Documenting code including APIs. Optimisation techniques. Testing code and applications, according to standards, to ensure resilience. Common data input and web application vulnerabilities. Using source code repositories and version management.

Teaching and Learning Methods: Scheduled learning - includes lectures and tutorials. Tutorials will consist of worksheet exercises, use of custom-built online tutor tools and supervised group work on the assignment (B component).

Independent learning – students are expected to undertake preparatory reading related to the weekly topics and to continue the usage of online tutors between contact sessions. Additional work on the group assignment is expected outside of scheduled tutorials.

Contact time: 72 hours Assimilation and development of knowledge: 148 hours Exam preparation: 40 hours Coursework preparation: 40 hours Total study time: 300 hours

Part 3: Assessment

Assessment is divided between an exam to test theoretical and analytical data skills and a coursework assignment with group and individual components to evaluate the students' ability to implement data schemas and to retrieve, manipulate and present data.

The examination (A component) will typically consist of a multiple choice component focusing on technical knowledge and a choice of short answer questions to assess analytical skills. Short answer questions will typically consist of:

Deriving entity models or schema from qualitative data;

Suggesting/evaluating possible technical approaches to a data design or management problem;

Being able to name and define architectural components in a data management application;

Identifying security, management or performance issues in a data management scenario and suggesting improvements or enhancements.

Answers will be assessed for completeness, technical correctness and the application of sound design principles. Thorough answers that show evidence of wider reading and independent learning will score highly.

The coursework assignment (B2 component) will normally be carried out in groups of 3 or 4, with groups having to produce a working data-driven application combining data from various sources. In addition, individuals will be required to produce their own specialised component that extends the basic application. Both parts will require documentation and evaluative commentary.

The coursework will be assessed for a sound underlying data models, efficient data manipulation, programming standards and adequate documentation. Both group and individual components that extend beyond basics,

showing creativity and effort will be rewarded.

Weekly material presented in lectures and tutorial worksheets will provide the technical basis for the coursework assignment. Substantial tutor input and support will be provided to groups attending tutorial workshops on assignment preparation.

First Sit Components	Final Assessment	Element weighting	Description
Set Exercise - Component B		40 %	Data modelling, integration and presentation task with group and individual components
Set Exercise - Component B		10 %	Completion of worksheets and online tutorials
Examination - Component A	~	50 %	Examination (2 hours) (final element)
Resit Components	Final Assessment	Element weighting	Description
Set Exercise - Component B		50 %	Individual data modelling, integration and presentation task
Examination - Component A	\checkmark	50 %	Examination (2 hours)

Part 4: Teaching and Learning Methods				
Learning Outcomes	On successful completion of this module students will achieve the following learning	outcomes:		
	Module Learning Outcomes	Reference		
	Derive well-structured and workable schemas from unstructured and qualitative data, capturing domain entities, their attributes and constraints and the relationships between them	MO1		
	Design and implement a range schemas across a range of data domains using appropriate good design practice	MO2		
	Perform accurate create, read, update and delete (CRUD) operations on a range of different data structures	MO3		
	Effectively use web standards for the retrieval and representation of data to derive meaningful and useful structure (form) and information (content) from a variety of web services	MO4		
	Using relational databases, XML and JSON as a grounding, understand the emergence and uses made of very-large-scale NoSQL key-value pair, document oriented and graph based distributed databases. Analyse through specific examples the isomorphic nature of these databases, how schemas are and can be applied and how these databases are queried, updated, replicated and maintained	MO5		
	Understand the value of data in an organizational and wider societal context. Appreciate the "context of use" and when and how this data needs to be authenticated, authorised, validated, mined, shared, secured and maintained	MO6		
Contact Hours	Independent Study Hours:			
	Independent study/self-guided study 22	28		

	Total Independent Study Hours:	228					
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	72					
	Total Scheduled Learning and Teaching Hours:	72					
	Hours to be allocated	300					
	Allocated Hours	300					
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufcfv4-30-2.html						

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Computing [Sep][SW][Frenchay][4yrs] BSc (Hons) 2018-19

Software Engineering for Business [Sep][SW][Frenchay][4yrs] BSc (Hons) 2018-19

Computing {Dual} [Mar][SW][Taylors][4yrs] BSc (Hons) 2018-19

Computing {Dual} [Aug][SW][Taylors][4yrs] BSc (Hons) 2018-19

Software Engineering [Sep][SW][Frenchay][4yrs] BSc (Hons) 2018-19

Digital Media [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

Information Technology Management for Business [Sep][SW][Frenchay][4yrs] BSc (Hons) 2018-19

Business Computing [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

Information Technology Management for Business [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

Software Engineering [Jan][FT][Northshore][3yrs] BSc (Hons) 2018-19

Software Engineering {Dual} [Aug][FT][Taylors][3yrs] BSc (Hons) 2018-19

Software Engineering {Dual} [Mar][FT][Taylors][3yrs] BSc (Hons) 2018-19

Software Engineering [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

Computing [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

Computing {Dual} [Mar][FT][Taylors][3yrs] BSc (Hons) 2018-19

Computing {Dual} [Aug][FT][Taylors][3yrs] BSc (Hons) 2018-19

Software Engineering for Business [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

Business Computing [Sep][SW][Frenchay][4yrs] BSc (Hons) 2018-19

Computer Science [Sep][SW][Frenchay][4yrs] BSc (Hons) 2018-19

Computer Science [May][FT][Villa][3yrs] BSc (Hons) 2018-19

Computer Science [Jan][FT][Villa][3yrs] BSc (Hons) 2018-19

STUDENT AND ACADEMIC SERVICES

Computer Science [Sep][FT][Villa][3yrs] BSc (Hons) 2018-19 Computer Science [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19 Digital Media [Sep][SW][Frenchay][4yrs] BSc (Hons) 2018-19 Digital Media [Sep][FT][SHAPE][3yrs] BSc (Hons) 2018-19