

MODULE SPECIFICATION

Part 1: Information						
Module Title	Electrical and Electronic Principles A					
Module Code	UFMFP8-15-1		Level	Level 4		
For implementation from	2020-	21				
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET [FET Dept of Engineering Design & Mathematics				
Module Type:	Standard					
Pre-requisites		None				
Excluded Combinations		None				
Co-requisites		None				
Module Entry Requirements		None				
PSRB Requirements		None				

Part 2: Description

Educational Aims: See Learning Outcomes.

In addition, the educational experience may explore, develop, and practise but not formally discretely assess the following:

Handling simulation software such as multiSIM and MATLAB

Awareness of professional learning

Outline Syllabus: Basic Components of Electronic Circuits

Resistors, capacitors, capacitive, inductors, all semiconducting devices

Resistive circuits: Kirchhoff's laws. Thevenins and Norton's theories, mesh analysis, Millman

theorem, principle of superposition.

Signal parameters and their types

Class-A and class-B amplifier,

Operational Amplifiers

Active Filters: Op amps use in active filter, as an integrator and differentiator, as a comparator and as an oscillator.

Passive filters: RC, RL and RLC circuit response, analysis and use of RLC circuits, oscillators

The Cartesian and polar representation of voltage, current and impedance

Power supplies and measurement instruments

Teaching and Learning Methods: The module delivers material on basic principles of electrical and electronic engineering. Concepts and the scope of a topic will be introduced in lectures. These will be supported by directed reading and simulation laboratory based work. Tutorial exercises will provide students confidence in applying the concepts and analysing and designing the simple electrical and electronic circuits. The labs sessions will enhance the understanding of students of real-world applications of the material delivered in the module. The students will learn through applying a variety of analysis methods, mathematical and simulation tools to simple circuits and electromagnetic systems. Relevant ethical issues will be highlighted and students will be encouraged to consider these further through directed reading.

Activity (Hours) Contact (36) Assimilation and skill development (66) Undertaking Coursework (24) Exam preparation (24) Total (150)

Part 3: Assessment

Your achievements in the module will be assessed in two components. The first component consists of a presentation and the second component comprises of logbooks submission and reflection.

Component A consists of only one assessment, worth 25% overall. There will be a 20 minute presentation including questions on the material submitted in the portfolio.

Component B consists of an individual reflective portfolio of key concepts covered during laboratory sessions, worth 75% overall.

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	✓	50 %	24 hour window, take home exam
Laboratory Report - Component B		50 %	Logbooks submission.
Resit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	50 %	24 hour, take home exam

STUDENT AND ACADEMIC SERVICES

Laboratory Report -	50 %	Individual assignment (based on lab work)	
Component B		50 %	submissions

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the following	g learning outcomes:				
	Module Learning Outcomes	Reference				
	A range of basic electrical/electronic components such as R, L, C, diodes	, MO1				
	transistors, general amplifiers and op-amps					
	Basic principles of electrical and electromagnetic signals	MO2				
	Electrical and electronic circuits design	MO3				
	The techniques for analysing circuits and their behaviours	MO4				
	Ethics related issues	MO5				
	Writing and presentation skills	MO6				
	Team working skills whilst tackling an integrated problem	MO7				
Contact Hours	Independent Study Hours:					
	Independent study/self-guided study	114				
	Total Independent Study Hours:	114				
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning	36				
	Total Scheduled Learning and Teaching Hours:	36				
	Hours to be allocated	150				
	Allocated Hours	150				
Reading List	The reading list for this module can be accessed via the following link:					
	https://uwe.rl.talis.com/modules/ufmfp8-15-1.html					

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Instrumentation and Control Engineering {Foundation} [Feb][PT][GCET][8yrs] BEng (Hons) 2018-19 Instrumentation and Control Engineering {Foundation} [Oct][PT][GCET][8yrs] BEng (Hons) 2018-19