

MODULE SPECIFICATION

Part 1: Information						
Module Title	Aerodynamics C					
Module Code	UFMEWA-15-M		Level	Level 7		
For implementation from	2019-	-20				
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET [FET Dept of Engin Design & Mathematics				
Module type:	Stand	Standard				
Pre-requisites		None				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Overview: Module Entry requirements, the module is intended for science and engineering graduates, or equivalent, with strong mathematical skills.

Educational Aims: See learning outcomes.

Outline Syllabus: Unsteady Aerodynamics:

Review of the basic laws, Theodorsen equation, panel methods

Oscillating airfoils in incompressible, subsonic, and supersonic flows

Arbitrary airfoil motion, oscillating finite wings

Unsteady motion of finite wings

Unsteady motion of non-lifting bodies

Unsteady boundary layer flow in two-dimensional and asymmetric flows

Periodic boundary layer flows

Unsteady separation

Oscillating flow in a pipe

Unsteady compressible boundary layers

Aero-elastic buffet

Stall flutter

Teaching and Learning Methods: Students will learn through a combination of formal lectures and tutorial sessions.

Part 3: Assessment

The module is examined via an open book exam.

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A	\checkmark	100 %	Open book exam (180 minutes)
Resit Components	Final Assessment	Element weighting	Description
Examination - Component A	~	100 %	Open book exam (180 minutes)

	Part 4: Teaching and Learning Methods	
Learning Outcomes	On successful completion of this module students will achieve the following learning	outcomes:
	Module Learning Outcomes	Reference
	The key principles of unsteady aerodynamics	MO1
	The differences between buffet and stall flutter	MO2
	The numerical methods used for unsteady aerodynamics	MO3
	Unsteady motion on wings and no-lifting bodies	MO4
	The physics of unsteady aerodynamics (subsonic/transonic and supersonic flows) and numerical methods, such as panel methods and Theodorsen equation	MO5
	Applications of theoretical predictions to wings	MO6
	The numerical/experimental data from a wing	MO7
	The unsteady phenomena caused by the interaction between the shock on the upper surface and the separation characterized by a main frequency corresponding to the shock movement and the pulsation of the separation	MO8
	Panel methods for analysis of lift generation and oscillating airfoils	MO9
	The boundary-layer viscous – inviscid interaction	MO10
	The Theordorsen function, which is essentially a Fourier Transform of the Wagner Function, and understand its limitations	MO11
	Relevant professional literature	MO12
	Problem formulation and decision making	MO13

Contact Hours	Independent Study Hours:					
	Independent study/self-guided study	114				
	Total Independent Study Hours:	114				
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning	36				
	Total Scheduled Learning and Teaching Hours:	36				
	Hours to be allocated	150				
	Allocated Hours	150				
Reading List	The reading list for this module can be accessed via the following link:					
	https://uwe.rl.talis.com/modules/ufmewa-15-m.html					

Part 5: Contributes Towards					
This module contributes towards the following programmes of study:					