

Module Specification

Conservation Biology

Version: 2025-26, v2.0, Approved

Contents

Module Specification	1
Part 1: Information	2
Part 2: Description	2
Part 3: Teaching and learning methods	4
Part 4: Assessment	5
Part 5: Contributes towards	7

Part 1: Information

Module title: Conservation Biology

Module code: USSKAK-30-2

Level: Level 5

For implementation from: 2025-26

UWE credit rating: 30

ECTS credit rating: 15

College: College of Health, Science & Society

School: CHSS School of Applied Sciences

Partner institutions: None

Field: Applied Sciences

Module type: Module

Pre-requisites: Ecology and Environmental Systems 2025-26

Excluded combinations: None

Co-requisites: None

Continuing professional development: No

Professional, statutory or regulatory body requirements: None

Part 2: Description

Overview: This module gives an understanding of the principles of environmental and ecological systems, and how this relates to conservation.

Features: Not applicable

Educational aims: This module aims to equip students with a comprehensive understanding of biodiversity conservation, emphasising both theoretical knowledge and practical applications. Students will develop critical thinking, analytical, and

Module Specification

Student and Academic Services

research skills while exploring biodiversity patterns, extinction causes, and conservation strategies at population and habitat levels. The module promotes proficiency in field-based techniques, conservation policy evaluation, and community engagement while enhancing professional skills such as teamwork, communication, and project management. Ultimately, it prepares students to become proactive conservation scientists capable of addressing real-world environmental challenges.

Outline syllabus: The indicative syllabus is as follows:

Introduction to Conservation Biology:

What is Conservation Biology? Why is it important? Why conserve biodiversity? In the early stages sessions will highlight how the discipline came about and what it is that Conservation Biology focuses on. You learn to identify diversity at a genetic, species and community level and assess biodiversity on a global scale.

Losses of biological diversity:

It is impossible to assess the level of concern without having knowledge of extinction rates past and present. Throughout this section of the module you will research the current fitness of populations and attempt to identify those vulnerable to extinction.

Causes of extinction:

In order to implement effective conservation practices we must understand the factors that threaten a species or a habitat. Previous research has shown us that it is difficult to stop these threats altogether, but appropriate management and integration with communities can be successful in reducing the impact.

Conservation at the population level:

Upon identifying the knowledge required to fully understand the population biology and natural history of a population, we will assess how to successfully monitor species in the field and carry out population viability analysis in order to prioritise for conservation.

Conservation at a habitat level:

Establishing protected areas is not a simple game: knowledge of a population is

essential to ensure the habitat provides the appropriate space, resources and biotic interactions that are required to sustain a population. This section will encourage critical analysis of designated areas where we will evaluate successes and failures and suggest future management techniques.

Ex-situ conservation strategies:

Although we will focus on in-situ conservation we are never in doubt of the need for ex-situ options. Throughout the module reference will be made to zoological and botanical gardens, seed banks etc. and we will analyse the benefits of these strategies and assess their future role in conservation.

Practical conservation methods:

Employ habitat surveys of plant communities to develop an appreciation of organism identification skills and diversity metrics. Use population estimation techniques as well as gaining an appreciation of the conservation influences on those populations and their habitats. Team-working skills will be promoted through group work. Students will be required to collect data and perform analyses as part of an assessed field report.

Part 3: Teaching and learning methods

Teaching and learning methods: Sessions will be made up of a mix of theory and interactive activities. During theory sessions students will be given research topics with which they must identify recent papers and report on in following weeks. Group discussions will also take place where students will share knowledge and research with peers to enhance understanding of the subject. There will also be guest speakers relevant to the topics.

The module will introduce the idea of analysing, synthesising and summarising information critically, including prior research. Learning methods include the application of knowledge and understanding to address familiar and unfamiliar problems.

Module Specification

Student and Academic Services

Scheduled learning includes interactive lectures, workshop and supervised fieldwork.

There will also be field work looking at practical conservation in action, this is

expected to be to Cyprus (subject to course changes) or for those who cannot make

it, an alternative on Clifton Downs.

Independent learning includes hours engaged with essential reading, case study

preparation, assignment preparation and completion.

Module Learning outcomes: On successful completion of this module students will

achieve the following learning outcomes.

MO1 Describe the importance of biodiversity and the efficacy of conservation

interventions applied at the species, population and landscape level.

MO2 Record, analyse and interpret ecological datasets within a conservation

context.

MO3 Recognise the factors that make individual species vulnerable to population

decline and the methods available to mitigate this (including both in situ and ex

situ approaches).

MO4 Compare a range of conservation strategies and critically evaluate their

effect on differing stakeholders.

Hours to be allocated: 300

Contact hours:

Independent study/self-guided study = 188 hours

Face-to-face learning = 112 hours

Reading list: The reading list for this module can be accessed at

readinglists.uwe.ac.uk via the following link https://uwe.rl.talis.com/modules/usskak-

30-2.html

Part 4: Assessment

Assessment strategy: Assessment 1: Field Work

Field Trip Report (2000 words maximum)

Page 5 of 7

Student and Academic Services

Module Specification

Students will complete a field report assessing their subject knowledge and

application of key conservation concepts through hands-on fieldwork. This will take

place either on a field trip to Cyprus or locally for those unable to travel.

Students will receive structured guidance in field research techniques, data

collection, and analysis to ensure they can effectively assess key conservation

concepts. Pre-trip workshops will introduce field methods, biodiversity assessment

techniques, and habitat evaluation skills, preparing students for hands-on data

collection during the field trip to Cyprus or the Downs. Post-fieldwork sessions will

provide support in data interpretation, report structuring, and scientific writing,

ensuring students can effectively translate their field experience into a

comprehensive and well-supported field report.

Assessment 2: Grant Writing Exercise (1500 words maximum)

Students will design a conservation project grant application proposal, applying their

knowledge learnt throughout the module to meet specified funding criteria, simulating

real-world grant applications in conservation.

Throughout the module, students will receive structured support to develop the skills

needed for writing a strong grant proposal by analysing successful applications and

engaging in iterative writing and review processes. Workshops, peer reviews, and

targeted feedback sessions will help refine their ability to articulate conservation

priorities, justify funding needs, and apply scientific evidence effectively. Hands-on

exercises, including biodiversity assessments, population viability analysis, and

habitat evaluations, will provide practical data that students can integrate into their

proposals.

Assessment tasks:

Field work (First Sit)

Description: Field trip report (2000 words)

Weighting: 50 %

Final assessment: No

Group work: No

Learning outcomes tested: MO2, MO3

Set Exercise (First Sit)

Description: Grant writing for conservation (1500 words)

Weighting: 50 %

Final assessment: Yes

Group work: No

Learning outcomes tested: MO1, MO4

Field work (Resit)

Description: Field trip report (2000 words)

Weighting: 50 %

Final assessment: No

Group work: No

Learning outcomes tested: MO2, MO3

Set Exercise (Resit)

Description: Grant writing for conservation (1500 words)

Weighting: 50 %

Final assessment: Yes

Group work: No

Learning outcomes tested: MO1, MO4

Part 5: Contributes towards

This module contributes towards the following programmes of study:

Integrated Wildlife Conservation [Zoo] FdSc 2024-25