
Module Specification Student and Academic Services

Page 1 of 5
13 February 2025

Module Specification

Computational Problem-Solving

Version: 2025-26, v1.0, 20 Jan 2025

Contents
Module Specification ... 1

Part 1: Information ... 2

Part 2: Description ... 2

Part 3: Teaching and learning methods ... 3

Part 4: Assessment .. 4

Part 5: Contributes towards .. 5

Module Specification Student and Academic Services

Page 2 of 5
13 February 2025

Part 1: Information

Module title: Computational Problem-Solving

Module code: UFCEHQ-15-1

Level: Level 4

For implementation from: 2025-26

UWE credit rating: 15

ECTS credit rating: 7.5

College: College of Arts, Technology and Environment

School: CATE School of Computing and Creative Technologies

Partner institutions: University Centre Weston

Field: Computer Science and Creative Technologies

Module type: Module

Pre-requisites: None

Excluded combinations: None

Co-requisites: None

Continuing professional development: No

Professional, statutory or regulatory body requirements: None

Part 2: Description

Overview: This module introduces students to essential algorithms, data structures,

and logic for software development. Covering both theoretical and practical aspects,

it prepares students to tackle computational problems effectively, emphasising

efficient algorithm design, problem-solving strategies, and the significance of data

structure choice on software performance.

Features: Not applicable

Module Specification Student and Academic Services

Page 3 of 5
13 February 2025

Educational aims: •Acquire a deep understanding of key data structures such as

arrays, stacks, queues, linked lists, trees, graphs, and hash tables.

•Master fundamental sorting and searching algorithms, understanding their efficiency

and application.

•Learn to handle critical sections and race conditions in software development to

write more secure and robust code.

•Develop problem-solving skills by applying theoretical knowledge to practical

challenges.

•Understand the foundations of algorithms to better predict their performance in real-

world applications.

Outline syllabus: •Overview of algorithms, data structures, and their importance in

software development.

•Detailed study of both primitive (arrays, vectors, pointers) and abstract data types

(linked lists, stacks, queues, trees, hash tables), focusing on their implementation

and application

•Exploration of various sorting techniques, including QuickSort, MergeSort, and

BubbleSort, with emphasis on their efficiency and use cases.

•Examination of search strategies e.g. Binary Search, Depth-First Search, and

Breadth-First Search, understanding their mechanisms and applications.

•Study of asymptotic notation (Big O, Theta, Omega Notation) to analyse algorithm

efficiency and performance.

•Fundamentals of algorithm complexity, efficiency analysis, and optimisation

techniques to solve complex problems effectively.

•Hands-on exercises and project-based tasks applying data structures and

algorithms to real-world challenges.

Part 3: Teaching and learning methods

Teaching and learning methods: Lectures covering the fundamentals of

algorithms, data structures and time complexity, followed by practical delivery

through a series of workshops, labs, and project-based tasks to develop the skills

Module Specification Student and Academic Services

Page 4 of 5
13 February 2025

required to design, implement, and evaluate computational systems. Regular

discussions and presentations will foster critical thinking and communication skills.

Module Learning outcomes: On successful completion of this module students will

achieve the following learning outcomes.

MO1 Demonstrate the fundamental algorithms, data structures, and their

applications in computational problem solving.

MO2 Utilise critical thinking and problem-solving skills to design and implement

computational challenges.

MO3 Demonstrate the application of the common data structures used within

software development, with their related advantages and disadvantages.

Hours to be allocated: 150

Contact hours:

Independent study/self-guided study = 114 hours

Face-to-face learning = 36 hours

Reading list: The reading list for this module can be accessed at

readinglists.uwe.ac.uk via the following link

https://rl.talis.com/3/uwe/lists/E4ED1B4E-5589-944E-72FD-36056F317C55.html

Part 4: Assessment

Assessment strategy: The Computational Problem-Solving module is assessed

using a 3-hour controlled assessment.

The TCA will assess students' understanding and proficiency in the topics covered in

the syllabus. The assessment will evaluate their theoretical and practical knowledge

of implementing data structures and algorithms, as well as their ability to critically

analyse and solve computational problems.

During the TCA, students will be presented with a specific computational problem.

They are required to identify and implement a solution, then write a short evaluation

Module Specification Student and Academic Services

Page 5 of 5
13 February 2025

(Est. 300 words) of their approach, highlighting efficiency, complexity (e.g., using Big

O Notation), and possible improvements .

Tutor-led formative feedback will be available throughout the module to support

students in their learning and development. Preparation for summative assessment

will be supported by opportunity for a mock assessment and formative feedback.

Assessment tasks:

In-class test (First Sit)

Description: 3 hour Time Constrained Assessment

Weighting: 100 %

Final assessment: Yes

Group work: No

Learning outcomes tested: MO1, MO2, MO3

In-class test (Resit)

Description: 3 hour Time Constrained Assessment

Weighting: 100 %

Final assessment: Yes

Group work: No

Learning outcomes tested: MO1, MO2, MO3

Part 5: Contributes towards

This module contributes towards the following programmes of study:

Software Development [UCW] FdSc 2025-26

	Module Specification
	Part 1: Information
	Part 2: Description
	Part 3: Teaching and learning methods
	Part 4: Assessment
	Part 5: Contributes towards

