

Module Specification

Computational Civil Engineering

Version: 2025-26, v3.0, Approved

Contents

Module Specification	1
Part 1: Information	2
Part 2: Description	2
Part 3: Teaching and learning methods	3
Part 4: Assessment	4
Part 5: Contributes towards	6

Part 1: Information

Module title: Computational Civil Engineering

Module code: UBGJFN-15-2

Level: Level 5

For implementation from: 2025-26

UWE credit rating: 15

ECTS credit rating: 7.5

College: College of Arts, Technology and Environment

School: CATE School of Engineering

Partner institutions: None

Field: Engineering, Design and Mathematics

Module type: Module

Pre-requisites: None

Excluded combinations: None

Co-requisites: None

Continuing professional development: No

Professional, statutory or regulatory body requirements: None

Part 2: Description

Overview: With the increasing complexity of civil engineering projects and the need for more efficient and accurate solutions, computational tools have become essential in all engineering fields, including civil engineering.

This module is aimed at equipping students with those tools by learning programming fundamentals, including structure and best practice, and applying these skills to solve problems in various civil engineering fields. Students will also

Module Specification

Student and Academic Services

learn to write programs to analyse data for or to solve civil engineering problems and

critically compare methods and programs, considering computational efficiency and

the accuracy of the results.

Features: Not applicable

Educational aims: This module aims at providing students with the knowledge and

skills to apply programming and numerical and statistical methods to solve civil

engineering problems.

Outline syllabus: 1. Principles of Computer Programming

2. Pseudocode and Flowcharts

3. Scripts, Variables, Vectors and Matrices

4. Plotting and Graphing

5. Operators and Conditional Statements

6. For and While Loops

7. Statistics and Data Analysis Methods

8. Symbolic Tool and Optimisation Algorithms

Part 3: Teaching and learning methods

Teaching and learning methods: This module is taught using lectures to introduce

the fundamental principles, followed by practical sessions in computer rooms where

students will apply the concepts covered in the lectures to develop programming

routines to solve civil engineering problems.

Module Learning outcomes: On successful completion of this module students will

achieve the following learning outcomes.

MO1 Demonstrate programming competence to analyse data and solve civil

engineering problems.

MO2 Apply and evaluate numerical methods in programming for efficiency and

accuracy.

Hours to be allocated: 150

Contact hours:

Page 3 of 6 10 October 2025 Independent study/self-guided study = 114 hours

Face-to-face learning = 36 hours

Reading list: The reading list for this module can be accessed at readinglists.uwe.ac.uk via the following link https://rl.talis.com/3/uwe/lists/B766ED9B-A0AF-8A18-BD34-E235E79EBF70.html

Part 4: Assessment

Assessment strategy: Assessment through one portfolio composed of two elements: (i) a script file with the code to solve a civil engineering problem; and (ii) a report explaining the problem-solving process, analysing the results, and discussing possible strategies to improve the quality and efficiency of the developed code.

The assessment strategy for this module consists of a portfolio that allows students to demonstrate their programming skills, problem-solving abilities, and critical thinking in the context of civil engineering applications. The portfolio is composed of two elements:

1. Script File

Students are required to develop a script file containing the code to solve a given civil engineering problem. The script should demonstrate their understanding and application of programming concepts, numerical methods, and statistical analysis covered in the module. The script file assesses their technical proficiency, accuracy in implementation and efficiency in solving the problem.

2. Report

In addition to the script file, students must submit a report that explains the problemsolving process, analyses the results obtained from the code, and discusses possible strategies to improve the quality and efficiency of the developed code. The report assesses their ability to critically evaluate their code, identify areas for improvement, and propose solutions to enhance the code's performance and accuracy. It also evaluates their understanding of the civil engineering problem,

Student and Academic Services

Module Specification

proficiency in interpreting and analysing the results, and communication skills in

presenting their findings.

This assessment strategy aligns with the educational aims of the module by

evaluating students' ability to apply programming and computational methods to

solve civil engineering problems. The portfolio approach provides a comprehensive

assessment of students' skills and knowledge, allowing them to showcase their

technical abilities in developing the script file and their analytical and communication

skills in the report.

The script file evaluates students' technical competence in implementing

programming concepts and applying numerical and statistical methods to solve real-

world civil engineering problems. It focuses on their ability to write accurate and

efficient code, demonstrating their proficiency in using appropriate algorithms, data

structures, and problem-solving strategies.

The report component assesses students' critical thinking and problem-solving skills.

It requires them to analyse the results obtained from their code, identify potential

improvements, and propose strategies to enhance the code's quality and efficiency.

This encourages students to think critically about their programming choices,

consider alternative approaches, and communicate their findings effectively.

The referral follows the same scheme of the summative assessment, using a new

problem.

Assessment tasks:

Portfolio (First Sit)

Description: Portfolio composed of two elements: (i) a script file with the code to

solve a civil engineering problem; and (ii) a report explaining the problem-solving

process, analysing the results, and discussing possible strategies to improve the

quality and efficiency of the developed code.

Weighting: 100 %

Final assessment: Yes

Student and Academic Services

Module Specification

Group work: No

Learning outcomes tested: MO1, MO2

Portfolio (Resit)

Description: Portfolio composed of two elements: (i) a script file with the code to solve a civil engineering problem; and (ii) a report explaining the problem-solving process, analysing the results, and discussing possible strategies to improve the quality and efficiency of the developed code.

Weighting: 100 %

Final assessment: Yes

Group work: No

Learning outcomes tested: MO1, MO2

Part 5: Contributes towards

This module contributes towards the following programmes of study:

Civil Engineering [Frenchay] BEng (Hons) 2024-25

Civil Engineering [Frenchay] MEng 2024-25

Civil Engineering [Frenchay] BEng (Hons) 2024-25

Civil Engineering [Frenchay] MEng 2024-25