
Half Award in Computing

Contents Page

Section 1: Basic Data

Section 2: Educational Aims of the Programme

Section 3 Learning Outcomes of the Programme

Section 4 Programme Structure Diagram

Section 5 Entry Requirements

Section 6 Assessment Regulations

Section 7 Student Learning: Distinctive Features and Support

Programme Specification

Section 1: Basic Data

Awarding institution/body UWE

Teaching institution UWE

Faculty responsible for programme Computing, Engineering and Mathematical
Sciences

Programme accredited by N/A

Highest award title BSc (Hons) Computing &

Default award title BSc Computing &

Interim award title Diploma of Higher Education,
Certificate of Higher Education

Modular Scheme title (if different) MAR

UCAS code (or other coding system if
relevant)

Relevant QAA subject benchmarking group(s) Computing

On-going/valid until* (*delete as
appropriate/insert end date)

Valid from (insert date if appropriate)

Authorised by… Date:…

Version Code

For coding purposes, a numerical sequence (1, 2, 3 etc.) should be used for successive programme specifications where 2
replaces 1, and where there are no concurrent specifications. A sequential decimal numbering (1.1; 1.2, 2.1; 2.2 etc) should be
used where there are different and concurrent programme specifications

Section 2: Educational Aims of the Programme

The half-award in Computing has the following general aims:

1. To prepare students for computing careers in business, industry, and commerce, or in
organisations with a significant in-house IT management culture.

2. To inculcate in students problem-solving and other transferable skills that will be valuable to them
in any career.

3. To prepare students for progressing to study for higher degrees in computing.

4. To continue the development of those general study skills that will enable students to become
independent, lifelong learners.

The half-award in computing has the following specific aims:

1. To provide an approach to teaching and learning which maximises the deployment of e-based
facilities, like electronic discussion boards, within award modules in order to improve student
access to materials and thus provide support for learning.

2. To develop the students’ ability to make an immediate contribution to companies engaged in
electronic commerce and/or web-based development.

3. To develop the students’ understanding of the importance of project planning in any domain,
though with particular reference to the development of software projects.

4. To encourage the discerning use of reference material from a variety of sources.

Section 3: Learning Outcomes of the Programme

The award route provides opportunities for students to develop and demonstrate knowledge and
understanding, qualities, skills and other attributes in the following areas: …

A. Knowledge and Understanding

Knowledge and Understanding of: Teaching/Learning Methods and Strategies Assessment
1. Object-oriented programming language

concepts; other programming paradigms;
syntax and semantics; top-down development;
programming to satisfy designs.

2. Program design concepts, methods, and
notations; object-oriented design and other
design paradigms; algorithms; design patterns.

3. Object-oriented and related databases; logical
and physical database design; database query
languages.

4. The concepts underpinning distributed
systems and networks.

5. The concepts underpinning World-Wide Web
technology and web-based application
development.

6. Electronic commerce; architectures and
components of commercial applications based
upon www technology; technical and
management issues.

7. The concepts underlying the reuse of
components and framework in software
development; related research issues.

8. The architecture and main components of
computers.

9. The concepts underpinning user interfaces;
good design practice; notation issues; user
interface evaluation.

On all modules, at all levels, the learner is encouraged to
undertake independent reading both to supplement and
consolidate what is being taught/learnt and to broaden their
individual knowledge of the subject.

The programme of study is designed as to introduce the
knowledge and understanding necessary to engage, from the
beginning, in appreciating and solving small-scale problems. At
level 1, the context in which these issues reside is introduced
but the in-depth understanding of large, complex, real-world
problems essentially starts with level 2 study. At level 3, we
continue to increase our in-depth knowledge and understanding
of in-depth to technical solutions of real-world problems for
topics pertinent to the present state of the industry.

At level 1, knowledge and understanding of topics 1-6 (Object-
oriented programming language concepts; Program design
concepts; Object-oriented and related databases; Concepts
underpinning distributed systems and networks;
Concepts underpinning World-Wide-Web technology; Electronic
commerce) is introduced on two modules which explore the
general concepts, components and issues, positioning them in
the computing environment. The general understanding of
topics 1-6 is built on with more in-depth knowledge and specific
understanding of application in further levels.

Topic 8, “The architecture and main components of computers.”
is taught only at level 1 providing, for this award, the delimiters
of a sufficient technical knowledge and understanding.

Topics 7 & 9 (“Concepts underlying the reuse of components
and framework in software development”, and “Concepts
underpinning user interfaces; good design practice; notation
issues; user interface evaluation.”) have only a cursory mention
at level 1 although the more astute learner will find consistent
references to relevant knowledge.

Testing of the knowledge base is
through:

Assessed coursework (topics: 1, 2, 3,
4, 6, 8, 9);
Assessed practical work (topics: 1,
2);
Examination (topics: 1, 2, 3, 4, 5, 7,
6, 8, 9);
Peer and tutor evaluation (topics: 2,
5);
Group coursework/project (topics: 2,
5, 6);
Portfolio of exercises (topics: 1, 4, 7);
Poster presentation (topics: 1, 4, 7);
Internet/online assessment (topics: 1,
5).

Knowledge and Understanding of: Teaching/Learning Methods and Strategies Assessment

At level 2 the knowledge and understanding of computing
continues with an expansion into broader and larger issues,
such as, the design of, and methods of building, large systems.
The complexity and design of such systems is addressed in all
level 2 modules. Moreover, in-depth knowledge and
understanding of topics 2-4 (Program design concepts; Object-
oriented and related databases; Concepts underpinning
distributed systems and networks.) is delivered in these
modules. At level 2, knowledge of topic 1 is assumed but will
be consolidated by constant review and usage.

The development of specialised and more specific knowledge
and understanding emerges level 3 where half-modules, seen
for the first time, allow in-depth focus on advanced topics. In
particular, topics 3 (Object-oriented and related databases), 5
(Concepts underpinning World-Wide Web technology and web-
based application development.), 6 (Electronic commerce) and
9 (The concepts underpinning user interfaces; good design
practice; notation issues; user interface evaluation.) each have
a module dedicated to delivering the necessary technical
knowledge and understanding. The remaining module primarily
delivers the knowledge and understanding topic 7 (concepts
underlying the reuse of components and framework in software
development), and further consolidates topics 1 and 4.

B. Intellectual Skills

Intellectual Skills Teaching/Learning Methods and Strategies Assessment
1. Critical Thinking
2. Analysis
3. Synthesis of different types of information
4. Evaluation
5. Problem Solving
6. Appreciate problem contexts
7. Balance conflicting objectives

At all levels students are required to bring together
knowledge and skills acquired in several modules
and hence determine new ways of working. As the
student progresses, the need to synthesise (3)
ever-greater volumes of information and
approaches into a coherent approach is developed
and consequently so is their critical thinking (1).

At level 1 Analysis (2), Evaluation (4) and Problem
Solving (5) are developed on small-scale problems
in various programming activities in a number of
modules. Here the focus is on understanding the
problem and then solving it free from the
environmental implications of real-world problems
and without the need to examine alternatives and
to balance conflicting goals.

At level 2 there is a move away from small-scale
problems to the design of larger scale systems.
With this comes the need to evaluate (4)
alternative methods and designs and to balance
conflicting objectives (7).

Level 3 sees the move to specific application
examples and with it the need to appreciate
problem contexts (6) is developed as well as
striking the right balance when facing conflicting
objectives (7).

Programming of complex software requires
demonstration of all of the intellectual skills. At
level 1 the focus in programming coursework
assessment, undertaken in a number of modules,
is on the skills of Analysis (2), Evaluation (4) and
Problem Solving (5). At levels 2 and 3 this
branches out to include all the remaining skills.
Many of the coursework assessments and exam
papers include elements of programming work.

Independent reading is used to enable students to
focus on their own areas of interest and in the
process asses skills 1-4 in the submitted reports,
essays and exam answers.

Design-work, even when not implemented in a
programming language, requires demonstration of
skills 1,2,5,6,7 and a number of coursework
assessments and exam questions are devoted to
such work.

Finally, all of the examinations assess skills 1-4
whist skills 5-7 are covered in many exams.

C. Subject, Professional and Practical Skills

Subject/Professional/Practical Skills Teaching/Learning Methods and Strategies Assessment
Students will be able to:

1. Write programs that conform to designs
2. Create high-level and low-level designs that

correspond to stated requirements
3. Design databases to meet application

requirements
4. Create user interfaces for a variety of

applications
5. Perform adequate tests on programs
6. Know how to use existing components and

frameworks to build new applications
7. Build web-based systems
8. Employ a range of tools and notations to

support the activities listed above: e.g. editors,
compilers, design workbenches, HTML, CGI,
Java etc..

Throughout the program, the skills listed are
developed through a combination of theoretical
discussion, practical laboratory based work,
classroom based tutorial exercises and directed
self-study. Many of the skills listed (1,2,3,5,6,8)
are introduced at level 1 and then drawn into
sharper focus at levels 2 and 3. The general
teaching/learning method is therefore to impart
these practical/professional skills by a process of
moving from an overview of what is required to a
specific application of an individual skill at a higher
level. Some very specific skills (4, 7) are
introduced at level 3. These are underpinned by
the more generalised capabilities (1, 8) that are
practised throughout the levels in most of the
modules that contribute to the award.

The possession of these skills is demonstrated
both by the development of a practical piece of
coursework (software) and by examination. The
practical nature of the skills to be acquired means
that some are specifically addressed by particular
modules (3, 4, 6, 7). The more generic skills
(1,2,5,8) are assessed across the modules.

For example, the module ‘Interface Engineering’
requires the students to develop a particular user
interface (4) as part of the assessment whilst the
examination allows students to demonstrate that
they have grasped the underlying concepts that
inform the professional development of such an
artefact.

Skills such as conformance to design and
requirements (1, 2) and the construction of
adequate testing strategies (5) are fundamental to
professional software development of any sort and
thus contribute to the assessment of all the
practical work produced.

D. Transferable Skills and Other Attributes

Transferable Skills and Other Attributes Teaching/Learning Methods and Strategies Assessment
1. Communication skills: to communicate orally
or in writing, including, for instance, the results
of technical investigations, to peers and/or to
“problem owners”.

1. Skill one is developed through a variety of methods and
strategies including the following:

♦ Students maintain laboratory log books
♦ Students participate in electronic conferences,

workshops, and groupwork sessions.
♦ Students participate in discussion tutorials
♦ Students present research topic findings in tutorials
♦ Students participate in individual tutorials

2. Self-management skills: to manage one’s
own time; to meet deadlines; to work with others
having gained insights into the problems of
team-based systems development.

2. Skill two is developed through a variety of methods and
strategies including the following:

♦ Students conduct self-managed practical work
♦ Students participate in practically-oriented tutorial

laboratory sessions
♦ Students work through practical work-sheets in teams
♦ Students practice design and programming
♦ Students participate in electronic conferencing tutorials
♦ Students participate in electronic groupworking tutorials

1. Skill one is demonstrated mainly by
examination, but also by poster
presentation.

2. Skills two through eight are
demonstrated by a number of similar
instruments including the following:

♦ Individual and group projects
♦ Practical assignments
♦ Portfolio of exercises

3. In addition skill two is assessed by both
peers and tutors

3. IT skills in context: to use software tools in
the context of application development.

3. Skill three is developed through a variety of methods and
strategies including the following:

♦ Students conduct self-managed practical work
♦ Students participate in experimental investigation

tutorials
♦ Students work through practical work-sheets in teams
♦ Students make use of online teaching materials
♦ Students are encouraged to practice programming to

extend their skills

Transferable Skills and Other Attributes Teaching/Learning Methods and Strategies Assessment
4. Logical reasoning skills: To undertake
analysis and interpretation of information in the
context of the Computing discipline.

4. Skill four is developed through a variety of methods and
strategies including the following:

♦ Students develop problem-solving programs
♦ Case-Studies are used to explore design issues with

students
♦ Students practice design and programming
♦ Students sketch designs of larger systems

5. Problem formulation: To express problems in
appropriate notations.

5. Skill five is developed through a variety of methods and
strategies including the following:

♦ Students develop problem solving programs
♦ Students practice design and programming
♦ Students sketch designs of larger systems

6. Progression to independent learning: To gain
experience of, and to develop skills in, learning
independently of structured class work. For
example, to develop the ability to use on-line
facilities to further self-study.

6. Skill six is developed through a variety of methods and
strategies including the following:

♦ Students are encouraged to practice programming to
extend their skills

♦ Students develop problem-solving programs
♦ Students are encouraged to research relevant topics
♦ Students are encouraged to use online facilities to

discover information
7. Comprehension of professional literature: to
read and to use literature sources appropriate to
the discipline to support learning activities.

7. Skill seven is developed through a variety of methods and
strategies including the following:

♦ Students are encouraged to access online material
8. Information access: to understand basic
techniques for structuring and thereby
accessing information.

8. Skill eight is developed through a variety of methods and
strategies including the following:

♦ Students develop a database system in laboratory
sessions

Section 4: Programme Structure for Half Award in Computing
Note: This structure is indicative and subject to change

Object Oriented
Databases

UFCE4P-10-3

Interface Engineering

UFCE4T-10-3

Software Technologies
for the Web

UFCE4X-10-3

Component-Based
Development

UFCE4Y-20- 3

E Commerce Special
Interest Groups

UFIE86-10-3

Year 2 P (Industrial Placement Year)

Data Structures and
Databases

UFCE4A-20-2

Software Design

UFCE4B-20-2

Distributed Systems &
Networks

UFIE8X-20-2

20 credits

Option 1

Systems Development

UFCE47-20-1

20 credits

Option 2

Option 1 taken from Option 3 taken from
****6 ****8Students not taking AI half award MUST choose

UFCE46-20-1
Students not taking Internet Systems half
award MUST take UFIE8W-20-1

****9 UFCE48-20-1 Computer Science ConceptsStudents taking AI half award MUST choose
UFCE4V-20-1 UFIE8Q-20-1 Information Systems Application Context

UFCE46-20-1 Introduction to Program Development UFIE8W-20-1 Information Technology
UFCE4V-20-1 Programming for Mathematics

Section 5: Entry Requirements

Students must achieve at least 200 points in the tariff point range. This equates to 3 Cs at A-level.
Equivalent qualifications, like Baccalaureate or Irish Higher, will be acceptable. Students must have a
pass in GCSE Mathematics at a minimum of Level C.

Section 6: Assessment Regulations

a) MAR

Section 7: Student Learning: Distinctive Features and Support

Within the Faculty of Computing Engineering and Mathematical Sciences, student learning will be
supported in the following distinctive ways:

� through provision of a large Open Access Laboratory (3P10) containing 50 machines that provide
students with access to a wide range of computer-based applications;

� through provision of nine other, frequently available, computer laboratories that provide similar
access;

� through provision of the CEMS System Support Helpdesk that provides a range of support for
learning to students including:

• support for a wide range of applications used by the students;
• help in the form of Assistants who are trained to resolve many common student problems;
• and help in the form of a large set of “Helpsheet Documents”, developed over a number of years,

that cover a variety of common student requests for information.

Section 8 Reference Points/Benchmarks

• Subject benchmarks (QAA Unit …)
• University teaching and learning policies:
• staff research projects:
• employer interaction/feedback:

The QAA Subject Benchmark Statement for Computing was published in 2000, and is applicable to
this proposal. The design team has considered them in drawing up the structure of the proposed half-
degree, and is of the view that the proposal falls clearly within the scope of the benchmarks, as
regards curriculum, teaching and learning, and the benchmarking standards themselves.

The benchmarks (para 2.1) identify a range of types of degrees in computing, from (at one extreme) a
programme which "covers a wide range of topics spanning the entire area of computing" to (at
another extreme) programmes which "take one very specific aspect of computing and covers it in
great depth". This proposal is closer to the first of these extremes. Nevertheless it does allow
students to recognise the importance of speciality areas, through the choice of Level 3 modules.

The benchmarks recognise (para 3.3) that diversity of provision is to be encouraged, and hence that
joint degrees have an important place. Nevertheless there are inevitably constraints on the breadth of
coverage of the subject possible within a "half-degree". The design team has faced these constraints
in the context of the principles of course design as set out in the benchmarks (para 3.1), and it
believes that it has successfully met them all to the extent that it is possible to do so within the half-
degree structure.

The benchmarks also contain (section 5) statements of the standards expected of graduates at both
modal and threshold levels. The team is of the view that graduates of the proposed programme will
be able to meet the required standards, albeit in some cases to a lesser depth than would be
expected of a graduate in a full honours degree in computing.

