

Faculty of Computing, Engineering & Mathematical Sciences

MEng/BEng(Hons) Electrical & Electronic Engineering

October 2004

Programme Specification

Section 1: Basic Data

Awarding institution/body	University of the West of England
Teaching institution	University of the West of England
Faculty responsible for programme	Computing, Engineering and Mathematical Sciences
Programme accredited by	BEng(Hons) by Institution of Electrical Engineers
Highest award title	MEng/BEng(Hons) Electrical & Electronic
Default award title	Engineering
Interim award title	Certificate of Higher Education
Modular Scheme title (if different)	Diploma of Higher Education
UCAS code (or other coding system if relevant)	
Relevant QAA subject benchmarking group(s)	Engineering
On-going	
Valid from (insert date if appropriate)	
Authorised by	Date:
Version Code: 1	

For coding purposes, a numerical sequence (1, 2, 3 etc.) should be used for successive programme specifications where 2 replaces 1, and where there are no concurrent specifications. A sequential decimal numbering (1.1; 1.2, 2.1; 2.2 etc) should be used where there are different and concurrent programme specifications

Section 2: Educational Aims of the Programme

- The aim of the Faculty's MEng programmes is to respond to the need for effective engineering practitioners by offering programmes that are an intellectually challenging mix of taught engineering science and experiential learning. The practitioner approach is intended to produce engineers with a strong orientation towards problem solving, underpinned by theoretical knowledge.
- The aim of this programme is to produce graduates with a broad understanding of electrical and electronic engineering, combining sound knowledge of the technological fundamentals of the subject with awareness of engineering practice, information technology, management and marketing issues.
- In addition, graduates with MEng through extended study of specialist subjects in intelligent systems, power engineering and/or telecommunications will be equipped to solve multi-disciplinary problems and lead future developments in the domain of power engineering and/or telecommunications.
- The Electrical & Electronic Engineering programme produces graduates with a wide range of expertise relevant to the industry in general and in particular industry related to power engineering and telecommunications. The programme covers a broad range of disciplines such as power systems, power electronics, control, data communications, signal processing and project management.

The aims of the programme are therefore that the graduate shall:

- 1. gain a sound knowledge and understanding of the fundamental principles governing the behaviour of electrical and electronics devices/systems and of the related mathematics;
- 2. be capable of both qualitative and quantitative analysis of the behaviour of complex electrical and electronic systems and be able to deduce their effect on those systems with which they interact, by application of (i) above;
- 3. demonstrate a capacity for innovative and creative design and be able to draw on knowledge of fundamental principles and proven systems to further develop existing systems and to generate new systems which meet required specifications;
- 4. understand the technical and non-technical constraints imposed on electrical engineering plant and systems by standard engineering design practices, costs, manufacturing procedures and production processes;
- 5. have an broad knowledge and understanding of engineering theory, practices and applications and be able to use advanced techniques of analysis, synthesis and implementation in the field of electrical engineering, including power systems, power electronics, telecommunications and control systems and be familiar with the use of electrical machines, light-current electronics, microprocessors and intelligent systems techniques.
- 6. have a sufficient understanding of the methods of industrial organisation for he/she to be able to participate usefully in commercial decision making; in particular, the graduate should operate effectively as a member of a multidisciplinary team, have an understanding of the principles of marketing and financial control and, in making management decisions, should consider the impact of law and economics;
- 7. have developed the ability, interest and motivation to conduct independent study and keep abreast of future changes in technology and engineering practices.
- 8. be able to communicate clearly, concisely and persuasively with individuals and groups, within and outside the profession, both orally and in writing.

Section 3: Learning Outcomes of the Programme

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, intellectual skills, subject-specific skills and transferable skills., as shown below.

A. Knowledge and Understanding

Knowledge and Understanding of:	Teaching/Learning Methods and Strategies	Assessment
1. The principles of electrical and	Acquisition of 1 to 7 is through a combination of formal lectures,	The outcomes are assessed in the core award-
electronic components and systems.	tutorials, laboratory work, guided project work, group assignments,	specific module through a variety of methods,
2. Mathematical methods appropriate to	independent projects and case studies.	including exams under controlled conditions and
electrical and electronic engineering and		coursework assignments, some of which are based
related fields.	The programme of study is designed to introduce basic knowledge	on practical laboratory investigations. Optional
3. The properties and characteristics of	and understanding of the technologies underpinning electrical &	modules will provide knowledge and
materials used in electrical and electronic	electronic engineering, design, product development and system	understanding of concepts, tools and techniques
components and systems.	operation through a range of level 1 modules. This basic knowledge	appropriate to the overall aims of the programme.
4. Core engineering science and technologies	is developed through a range of taught modules at level 2, and	
with greater depth in areas pertinent to the	integrated through group design and project work at levels 2, 3 and	
power engineering domain.	M. Advanced tools and technologies are studied in the final years	
5. The principles of information technology	of the programmes, and the programme as a whole is integrated	
and data communications with specific	through the BEng individual project at level 3 or MEng individual	
applications in electrical and electronic	project at level M.	
engineering.		
6. Management principles and business	Throughout the programme, the learner is encouraged to undertake	
practices.	the practical application of theory knowledge learnt in other	
7. The complexity of large-scale engineering	modules. Independent learning through reading and use of	
systems and projects, with particular	appropriate software is encouraged both to supplement and	
emphasis on power engineering and	consolidate what is being taught/learnt and to broaden the	
telecommunications systems.	individual knowledge and understanding of the subject. This is	
	further emphasised in the project modules, UFPED7-30-M (group	
	project) and UFEE6V-60-M (individual project).	

B. Intellectual Skills

	Intellectual Skills	Teaching/Learning Methods and Strategies	Assessment
1.	The ability to produce solutions to complex problems	At all levels students are required to bring together	The development of engineering solutions
	through the application of engineering knowledge and	knowledge and skills acquired in several modules and hence	requires demonstration of all of the intellectual skills. At level 1 the focus is on the skills of
2	understanding. Be able to apply scientific principles in the modelling	determine new ways of working. As the student progresses, the need to synthesise ever-greater volumes of information	Analysis, Evaluation and Problem Solving. At
۷.	and analysis of engineering systems, processes and	and approaches into a coherent approach is developed and	levels 2, 3 and M this branches out to include all
	products and be able to assess the limitations of	consequently so is their critical thinking.	the remaining skills.
	particular cases.	consequently so is then ended uniking.	the remaining skins.
3.	The ability to select and apply appropriate	At level 1, analysis, evaluation and problem solving are	Independent reading is used to enable students
	mathematical methods for modelling and analysing	developed on small-scale problems in various programming	to focus on their own areas of interest and in the
	relevant problems and be able to assess the limitations	activities in a number of modules. Here the focus is on	process assess skills in submitted reports,
	of particular cases.	understanding the problem and then solving it free from the	assignments and exam answers.
4.	The ability to use a broad spectrum of	environmental implications of real-world problems and	
	technologies/techniques to solve complex engineering	without the need to examine alternatives and to balance	Electrical & Electronic Engineering work
	problems.	conflicting goals.	requires demonstration of a very wide range of
5.	Be able to use scientific/technological principles in the		skills (1 - 7). These skills are assessed through a
	development of engineering solutions to practical	At level 2 there is a move away from small-scale problems	combination of coursework assessments,
	problems in the domain of electrical and electronic	to the design of larger scale systems. With this comes the	projects and examinations.
	engineering, and in particular power and	need to evaluate alternative methods and designs and to	
6	telecommunications engineering. The ability to select and apply appropriate computer	balance conflicting objectives.	
0.	based methods for modelling and analysing problems	Level 3 sees the move to specific application examples and	
	in fields relating to the design, manufacture and	with it the need to appreciate problem contexts is developed	
	control of electrical and electronic components and	as well as striking the right balance when facing conflicting	
	systems.	objectives.	
7.	The ability to understand issues relating to the		
	marketing of products and the management processes	Work at level M focuses on skills 8-10, and requires	
	associated with their design and manufacture.	independent thinking, information gathering and analysis.	
8.	A professional attitude to the responsibilities of	This is delivered through a combination of specialist taught	
	engineering practitioners.	modules plus group and individual project work.	
9.	The ability to use independent thinking and analysis in		
	the development of engineering solutions.		
10). Critically review available literature on topics related		
	to engineering		

C. Subject, Professional and Practical Skills

Subject/Professional/Practical Skills	Teaching/Learning Methods and Strategies	Assessment
Students will be able to:	Throughout the programme, the skills listed are	The possession of these skills is demonstrated by the
1	developed through a combination of theoretical	development of practical laboratory work, coursework,
1. use appropriate mathematical methods for	discussion, practical laboratory based work, classroom	presentations and examinations. The practical nature of
modelling and analysing problems, particularly in	based tutorial exercises and directed self-study.	the skills to be acquired means that some are
electrical and electronic engineering.	Tutorials consolidate material introduced in the lecture	specifically addressed by particular modules, whilst the
2. apply appropriate computer based methods for	environment, which together with laboratory practice	more generic skills are assessed across a range of
modelling and analysing problems in fields relating	using appropriate software, facilitate application of	modules.
to the design, manufacture and control of electrical	theory to practical problems. Many of the skills listed	
and electronic components and systems.	are introduced at level 1 and then drawn into sharper	
3. use relevant design, test and measurement	focus at levels 2 and 3. The general teaching/learning	
equipment.	method is therefore to impart these practical and	
4. apply experimental methods in the laboratory	professional skills by a process of moving from an	
relating to engineering design, manufacture and test.	overview of what is required to a specific application of	
5. undertake practical testing of design ideas through	an individual skill at a higher level. These are	
laboratory work or simulation with technical	underpinned by the more generalised capabilities that	
analysis and critical evaluation of results.	are practised throughout the levels in most of the	
6. apply engineering techniques taking account of	modules that contribute to the award.	
industrial and commercial constraints.		
7. execute and manage multi-disciplinary projects.		

D. Transferable Skills and Other Attributes

The skills developed in parts B and C above are highly valued in other areas and as such are highly transferable, for example:

- 1. problem structuring and formulation;
- 2. the critical interpretation of results to problem solving and analysis ;
- 3. ability to synthesize practical solutions from abstract problem formulations;

Transferable Skills and Other Attributes 1. Communication skills: to communicate orally or in writing, including, for instance, the results of technical investigations, to peers and/or to "problem owners".	 Teaching/Learning Methods and Strategies 1. Skill one is developed through a variety of methods and strategies including the following: Students maintain laboratory log books Students participate in electronic conferences, workshops, and groupwork sessions. Students participate in discussion tutorials Students present research topic findings in tutorials Students participate in individual tutorials Students collaborate on group projects 	 Assessment These skills are demonstrated in a variety of contexts including examination poster presentation. individual and group projects Practical assignments Portfolio of exercises
 2. Self-management skills: to manage one's own time; to meet deadlines; to work with others having gained insights into the problems of team-based systems development. 3. IT Skills in Context (to use software in the context of problem-solving investigations, and to interpret findings) 	 2. Skill two is developed through a variety of methods and strategies including the following: Students conduct self-managed practical work Students participate in practically-oriented tutorial laboratory sessions Students work through practical work-sheets in teams Students practice design and programming 3. Skill three is developed widely throughout the programme. 	

 4. Problem formulation: To express problems in appropriate notations. 5. Progression to independent learning: To gain experience of, and to develop skills in, learning independently of structured class work. For example, to develop the ability to use on-line facilities to further self-study. 	 4. Skill four is developed through a variety of methods and strategies including the following: Students develop problem solving programs Students practice design and programming Students sketch designs of larger systems 5. Skill five is developed through a variety of methods and strategies including the following: Students are encouraged to practice programming to extend their skills Students develop problem-solving programs Students are encouraged to research relevant topics Students are encouraged to use online facilities to 	
 6. Comprehension of professional literature: to read and to use literature sources appropriate to the discipline to support learning activities. 7. Working with Others: to be able to work as a member of a team; to be aware of the benefits and problems which teamwork can bring. 	 discover information 6. Skill six is developed through a variety of methods and strategies including the following: Students are encouraged to access online material Both MEng Group and Individual Projects require a thorough literature review 7. Skill seven is developed through a variety of methods and strategies including the following: Students work in groups in some laboratory sessions The MEng Group Project 	

Section 4: Programme Structure

Note: This structure is indicative and subject to change

Programme Structure for

M/Beng Electrical and Electronic Engineering

MEng Year 4

MEng Year 4					
Meng Individual Project	60 credits				
	Ortion 2				
UFEE6V-60-M MEng Year 3	Option 3				
Meng Group Project	Project Management	60 credits	20 credits		
UFPED7-30-M	UFEE6D-10-3	Option 1	Option 2		
BEng Year 3					
Individual Project (Electronics)	Project Management	60 credits	20 credits		
()					
UFEE63-30-3	UFEE6D-10-3	Option 1	Option 2		
01 2200 00 0					
		Year 2 P (Industrial Placemen	t Year)		
M/BEng Year 2 Embedded	Signal Processing and	Electrical Technology	Engineering	Engineering	Industrial Studies
Microprocessor Systems	Control	Electrical Technology	Mathematics 2	Mathematics 3	industrial Studies
UFEE69-20-2	UFEE7S-30-2	UFEE7T-30-2	UFQEFK-10-3	UFQEFL-10-2	UFPEDE-20
M/BEng Year 1					
Analogue Circuit	Software Development	Digital Electronics	Electronics Design	Engineering	
Principles	for Engineers			Mathematics 1	
UFEE79-20-1	UFEE7A-20-1	UFEE7B-20-1	UFEE7C-40-1	UFQEFH-20-1	

Option 1 taken from		
Power Electronics		
Power Systems		
Telecommunication Systems		
Alternative Energy		

	Option 2 taken from	
ILP	Modern Language	UFEE7K-15-M
Option 1	Not already chosen	UFEE7L-15-M
UFEE5W-20-3	Control Systems Design	UFEE7M-15-M
UFEE78-20-3	Mobile Communications	UFEE7N-15-M
UFEEKB-20-3	Microcomputer Control Systems	UFPEE5-15-M
UMAC3P-10-3	Man. Accounting in a Business	UFPEE7-15-M
	Context	
UMSCCA-10-3	Marketing and Strategic	
	Management	

Option 3 taken from		
UFEE7K-15-M	Intelligent & Adaptive Systems	
UFEE7L-15-M	Mobile Communications	
UFEE7M-15-M	Modern Power Systems	
UFEE7N-15-M	Neural Networks & Fuzzy Systems	
UFPEE5-15-M	Activators & Control	
UFPEE7-15-M	Operations Management &	
	Improvement	

PLEASE NOTE: REFER TO THE FACULTY ON-LINE INFORMATION SYSTEM FOR UP-TO-DATE STRUCTURE INFORMATION

http://www.cems.uwe.ac.uk/exist/index.xql

Section 5: Entry Requirements

The admissions requirements are similar to comparable awards offered in the Faculty of CEMS. For MEng and BEng(Hons), the standard offer will be 260 points and 180 points respectively at A-level, to include Mathematics (minimum C grade) and a Physical Science. Equivalent qualifications will also be accepted in lieu of A-levels. Courses in the Faculty of CEMS typically have a high proportion of students with BTEC or equivalent vocational qualifications and those who progress through the Foundation Programme.

Section 6: Assessment Regulations

The Modular Assessment Regulations apply to this programme

Section 7: Student Learning: Distinctive Features and Support

Class Activities The mode of delivery of a module is determined by its Module Leader, and typically involves a combination of one or more lectures, tutorials, 'lectorials', laboratory classes, group activities and individual project work. Modules which require laboratory classes are commonly delivered by means of a combination of lecture and practicals or tutorials. Other modules are often delivered by means of 'lectorials', classes for groups of 20-30 students with no distinction between lectures and tutorials.

Academic Support Academic advice and support is the responsibility of the staff delivering the module in question. Staff are expected to be available outside normal timetabled hours, either by appointment or during published "surgery" hours, in order to offer advice and guidance on matters relating to the material being taught and on its assessment.

Students are allocated a Personal Tutor at the beginning of the programme. The Tutor assists the student to develop a professional attitude to their studies, reflect on their study skills needs and to see the inter-relations between the various modules at different levels of the programme. A course of lectures relating to Professional & Academic Development reinforces the work of the Tutors. Further topics are covered in later years of the programme leading the students creating a Professional & Academic Development Portfolio highlighting the knowledge, skills and experiences gained on the course.

Pastoral Care The faculty's offers pastoral care through its Student Advisers, a team of staff who provide comprehensive, full-time student support service on a drop-in basis or by appointment. All students on the same route are allocated to the same Adviser, who is trained to provide advice on matters commonly of concern, including regulatory and other matters; the Adviser will, when necessary, advise the student to seek advice to from other professional services including the university's Centre for Student Affairs or from members of academic staff.

Progression to Independent Study

Many modules require students to carry out independent study, such as research for projects and assignments, and a full range of facilities are available at all sites to help students with these. The philosophy is accordingly to offer students both guided support and opportunities for independent study. Guided support, mainly in the form of timetabled sessions, takes the form of lectures, tutorials, seminars and practical laboratory sessions. Students are expected to attend all sessions on their timetable, and this is especially important because of the high content of practical work in the programme.

The progression to independent study will also be assisted by the nature of the support offered in individual modules. Typically, module leaders will provide a plan for the module indicating the activities to be carried out and the forms of learning to be undertaken during the delivery of the module, with a view to encouraging students to plan ahead and to take responsibility for managing their time and resources.

Facilities to Support Learning Within the Faculty of Computing, Engineering and Mathematical Sciences, student learning will be supported in the following distinctive ways :

- Through provision of Open Access and other available computer laboratories that provide access to a range of relevant computer based applications
- Through provision of the CEMS System Support Helpdesk that provides a range of support for learning to students including :
 - Support for a wide range of applications used by the students;
 - Help in the form of Assistants who are trained to resolve many common student problems
 - And help in the form of a large set of 'help-sheet documents', developed over a number of years, that cover a variety of common student requests for information.
- Technical support staff are available in laboratory sessions and during project work.
- Through very extensive laboratory facilities to support the technological modules. These focus on
 - The Power Systems and Electronics Laboratory (1N65) with experimental and computer simulation design tools for power engineering,
 - The Real Time Control and Telecommunications Laboratory (2N40) with facilities for control system analysis and design, embedded microprocessor hardware and software development, and signal processing and communications.
 - The Electronics Laboratory (1N70) with facilities for investigation of electrical and electronic principles and circuit design, build and test,

Computing Facilities The Faculty offers a specialised computing facility along side the general University provisions. There are nine general PC computing laboratories of 20 plus seats all running Windows2000, along with four Unix based laboratory and 10 specialist computing labs. The specialist laboratories are equipped with the specific software for CEMS students; including Software Design Tools development environment, CAD, finite element analysis, mathematics and statistics packages to support the taught program. The specialist Computing laboratories are designed to target the discipline taught in that area. Amongst these, is the Computer Systems Architecture and Linux laboratory. The Unix labs offer the latest web development and programming tools.

One of the most popular areas within the Faculty is the Open Access laboratory. This area is never time-tabled and gives students the opportunity to access machines at all times during opening hours. This is a mixed environment consisting of PCs and Unix workstations.

Due to the extensive computing facility provided within the Faculty, and the specialist nature of this facility, the need for user support is necessary. The Faculty provides a user support Helpdesk. The Helpdesk provides fist line support to the user base, uniquely supported by both permanent staff and students that are in their second or final year of study (employed on a part time basis) until 20.00hrs every day. These general purpose and specialist laboratories are available to students up until midnight, seven days per week.

Section 8 Reference Points/Benchmarks

In designing this programme, the faculty has drawn upon the following external reference points:

- 1. The QAA Framework for Higher Education Qualifications in England, Wales and Northern Ireland
- 2. The QAA Benchmark Statement for Engineering
- 3. UWE's Learning & Teaching Strategy

The QAA Framework for Higher Education Qualifications in England, Wales and Northern Ireland describes the attributes and skills expected of Honours graduates. It is our view that the learning outcomes of this programme are fully consistent with the qualification descriptor in the Framework, and hence that graduates will be able to demonstrate that they meet the expectations of the Framework.

The **QAA Subject Benchmark Statement for Engineering** outlines a set of skills expected of a graduate in an engineering discipline (Section 4 of the Statement refers), while noting that they should be interpreted in the context of the particular engineering discipline which is being studied. These skills map closely to the skills contained in the learning outcomes for this programme, and hence we have confidence that the programme is in accordance with the precepts of the Statement.

UWE's Learning & Teaching Strategy has informed the faculty's policy for the delivery of its programmes, whose main features are described in section 7.