

MODULE SPECIFICATION

Part 1: Information								
Module Title	Proba	Probability Theory and Mathematical Statistics [TSI]						
Module Code	UFCFWW-12-1		Level	Level 4				
For implementation from	2021	2021-22						
UWE Credit Rating	12		ECTS Credit Rating	6				
Faculty	Faculty of Environment & Technology		Field	Computer Science and Creative Technologies				
Department	FET I	ET Dept of Computer Sci & Creative Tech						
Module Type:	Stand	Standard						
Pre-requisites		None						
Excluded Combinations		None						
Co-requisites		None						
Module Entry Requirements		None						
PSRB Requirements		None						

Part 2: Description

Educational Aims: To acquaint students with theoretical foundations of probability theory and mathematical statistics and prepare them for construction and application of probabilistic models and empirical analysis of statistical data.

Outline Syllabus: Introduction to probability and statistics. Random experiments and random events. Operations with random events.

Probability space. Classical, geometrical, and statistical definitions of probability.

Probability of sum and product of random events. Conditional probability. Dependent and independent events.

The law of total probability. Bayes's rule.

Bernoulli trials, Bernoulli formula. Approximation: de Moivre-Laplace and Poisson theorems.

Random variables and their distributions.

STUDENT AND ACADEMIC SERVICES

Numerical characteristics of random variables: expected values, variance, moments, quartiles.

Discrete distributions: binomial, geometrical, Poisson.

Continuous distributions: uniform, exponential, normal.

Multivariate distributions. Theoretical covariance and correlation.

Law of large numbers in Bernoulli and Chebyshev's forms. The central limit theorem.

Mathematical statistics: main objectives and tasks. Descriptive statistics. Sampling.

Statistical estimation. Point estimates and their properties: unbiasedness, efficiency, consistency.

Interval estimates.

Testing of statistical hypotheses: the general algorithm, hypotheses about the expected value and the distribution law

Fundamentals of the sample correlation analysis.

Teaching and Learning Methods: Learning and teaching will be provided to students in three forms: lectures, practical probability calculus classes, and computer labs. During lectures, theoretical aspects of the course will be provided to students by the teaching staff. Lectures will be supported by presentation published and available to the students on e.tsi.lv under the module section. Also, additional materials, like publications on the internet, videos etc will be presented in e.tsi.lv.

During practical probability calculus classes, students receive a set of practical problems for every topic to perform. Several practical problems for every topic are explained during classes by a teaching assistant, while other problems are provided as a homework.

Computer labs are devoted to probability simulation and statistical data analysis using modern software such as R. Requirements' description for computer labs are provided, and students are expected to conduct the job independently outside the classes. The classes are reserved for requirement clarifications, problem discussion, and assessment.

Part 3: Assessment								
First Sit Components	Final Assessment	Element weighting	Description					
In-class test - Component A		70 %	a series of in-class tests covering, Practical probability calculus, Theoretical examination, Proof of course theorems, as well as weekly MCQ					
Portfolio - Component B		30 %	A series of tasks finding the solutions to a set a problems covering probability calculus as well as other topics covered within this module. students are required to include Source codes and supplementary reports on computer labs					
Resit Components	Final Assessment	Element weighting	Description					

STUDENT AND ACADEMIC SERVICES

In-class test - Component A	70 %	a series of in-class tests covering, Practical probability calculus, Theoretical examination, Proof of course theorems, as well as weekly MCQ
Portfolio - Component B	30 %	A series of tasks finding the solutions to a set a problems covering probability calculus as well as other topics covered within this module. students are required to include Source codes and supplementary reports on computer labs

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:			
	Module Learning Outcomes					
	Know the terminology of probability theory and mathematical statistics	6	MO1			
	Have clear understanding of probability theory axioms and theorems		MO2			
	Know the concept of discrete and continuous random variables		MO3			
	Know basic distribution laws (uniform, binomial, geometrical, Poisson, exponential, normal)					
	Understand theoretical foundations of point and interval statistical estimates					
	Understand principles of statistical hypotheses testing and be able to implement them on empirical data					
	Be able to apply different techniques for probability calculation	MO7				
	Have a skill of random variable construction and application					
	Be able to apply statistical sampling method					
	Be able to construct point and interval estimates for unknown population parameter					
	Be able to use modern software for solving problems of probability theory and mathematical statistic					
	 Ability to recognize probabilistic problems in application areas and state them in a proper mathematical form Preparedness for practical application of probability theory and mathematical statistics to professional problems Ability to use professional software for probabilistic simulation and statistical data processing 					
Contact Hours	Scheduled Learning and Teaching Hours:					
	Face-to-face learning	64				
	Total Scheduled Learning and Teaching Hours:	6	4			
	Hours to be allocated					
	Allocated Hours	4				
Reading List	The reading list for this module can be accessed via the following link:					
	https://rl.talis.com/3/uwe/lists/D3BCD907-EA5F-548A-3E0E-C6E0C100 gb&login=1	68380.html?la	ng=en-			

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Computer Science and Software Development [Oct][FT][TSI][4yrs] BSc (Hons) 2020-21 Computer Science and Software Development [Feb][FT][TSI][4yrs] BSc (Hons) 2020-21