

MODULE SPECIFICATION

Part 1: Information							
Module Title	Furth	Further Aerodynamics					
Module Code	UFMFXU-15-3		Level	Level 6			
For implementation from	2022-	2022-23					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field				
Department	FET	ET Dept of Engineering Design & Mathematics					
Module Type:	Stanc	ndard					
Pre-requisites		Fundamental Aerodynamics 2021-22					
Excluded Combinations		None					
Co-requisites		None					
Module Entry Requirements		None					
PSRB Requirements		None					

Part 2: Description

Overview: Advanced Aerodynamics aims to build on the fundamental aerodynamics and complete the undergraduate education in aerodynamics. Applications of the Navier-Stokes equations to boundary layers and compressible flow are investigated and low order numerical modelling of flows are considered.

Educational Aims: The module aims to provide a complete understanding of the principles of fundamental aerodynamics

Outline Syllabus: Fundamentals of viscous flows: conservation laws, laminar boundary layer and turbulent boundary layer.

Pressure gradient and boundary layer separation.

Flow transition: boundary layer transition process, prediction of the onset of transition.

Compressible flow: governing equations for normal and oblique shock waves, expansion waves, shock interactions, and application to diffusers, nozzles and engine intakes.

Horseshoe vortex systems and panel codes.

Use of the wind tunnel for internal and external aerodynamics

STUDENT AND ACADEMIC SERVICES

Teaching and Learning Methods: The method of teaching and learning is designed so that students can quickly consolidate theoretical principles through exercises, laboratory experiments and application in coursework.

Lectures and lectorial sessions are used to convey concepts and principles which are then backed up by tutorials, self-paced sessions, hands-on laboratory experiments and coursework.

Part 3: Assessment

Component A is a two hour examination that will test understanding of learning outcomes relating to analytical skills on aerodynamics

Component B ensures that students are able to demonstrate their understanding of underpinning principles within a practical or simulated practical environment where a portfolio of practical skills are assessed for example wind tunnels and numerical codes. An individual report of 3000 words will be submitted.

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A	\checkmark	50 %	Written Examination
Written Assignment - Component B		50 %	Coursework
Resit Components	Final Assessment	Element weighting	Description
Examination - Component A	✓	50 %	Written Exam
Written Assignment -		50 %	Coursework

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:					
	Module Learning Outcomes		Reference			
	Application of the theory for predicting boundary layer development, flow separation, transition and supersonic flow properties. (SM1b, SM2b)					
	Application of analytical/numerical models/methods to produce simulations of aerodynamic flows (SM1b, SM2b, EA3b)					
	Application of ground based experimental facilities to acquire and process suitable data, and analyse flow simulations (SM1b, SM2b, P3, P8)					
	Demonstrate key transferable skills in problem formulation and decisi self-management and communication (P4)	ion making,	MO4			
Contact Hours	Independent Study Hours:					
	Independent study/self-guided study	11	.4			
	Total Independent Study Hours:	114				
	Scheduled Learning and Teaching Hours:					

STUDENT AND ACADEMIC SERVICES

	Lectures	24		
	Tutorials	12		
	Total Scheduled Learning and Teaching Hours:	36		
	Hours to be allocated	150		
	Allocated Hours	150		
Reading List	The reading list for this module can be accessed via the following link:			
	https://uwe.rl.talis.com/lists/08A7CA93-B6A4-AC26-C705- 3B68E362FB4E.html?draft=true⟨=en&login=1&version=v1			

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Aerospace Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2020-21

Aerospace Engineering [Sep][FT][Frenchay][4yrs] MEng 2020-21

Aerospace Engineering with Pilot Studies [Sep][FT][Frenchay][3yrs] BEng (Hons) 2020-21

Aerospace Engineering with Pilot Studies [Sep][FT][Frenchay][4yrs] MEng 2020-21