

## MODULE SPECIFICATION

| Part 1: Information       |                                     |                                     |                     |         |  |  |  |
|---------------------------|-------------------------------------|-------------------------------------|---------------------|---------|--|--|--|
| Module Title              | Furth                               | Further Aero-Propulsion             |                     |         |  |  |  |
| Module Code               | UFMFYU-15-3                         |                                     | Level               | Level 6 |  |  |  |
| For implementation from   | 2022-23                             |                                     |                     |         |  |  |  |
| UWE Credit Rating         | 15                                  |                                     | ECTS Credit Rating  | 7.5     |  |  |  |
| Faculty                   | Faculty of Environment & Technology |                                     | Field               |         |  |  |  |
| Department                | FET Dept of Engineering De          |                                     | esign & Mathematics |         |  |  |  |
| Module Type:              | Stand                               | tandard                             |                     |         |  |  |  |
| Pre-requisites            |                                     | Fundamental Aero-Propulsion 2021-22 |                     |         |  |  |  |
| Excluded Combinations     |                                     | None                                |                     |         |  |  |  |
| Co-requisites             |                                     | None                                |                     |         |  |  |  |
| Module Entry Requirements |                                     | None                                |                     |         |  |  |  |
| PSRB Requirements         |                                     | None                                |                     |         |  |  |  |

#### Part 2: Description

**Overview**: The module provides further and more advanced knowledge and understanding of the thermodynamics and engine performance through components analysis.

The main focus is on the engineering design and analysis of components in the main gas path, i.e. compressor, combustion chamber, and turbine as well as further emphasis on nozzles and diffusers, and related emerging technologies.

**Educational Aims:** The aim of this module is to provide advanced technical underpinning in thermodynamics applied to engine design and performance.

Outline Syllabus: Indicative curriculum:

Combustor and combustion physics Turbomachinery (Euler Turbine Equation, Velocity Triangle, Compressors, Turbines) Blades interaction Blade cooling Other components (diffusers, nozzles, etc.) Introduction to electric propulsion

## STUDENT AND ACADEMIC SERVICES

**Teaching and Learning Methods:** In order to ensure secure knowledge of technical content that is then applied in context, the module will combine lectures and lectorials to learn concepts and principles, as well as practicals to allow students to experience working on real engineering challenges.

### Part 3: Assessment

The module will be assessed using two components.

Component A is a written end-of-semester exams to assess mathematical competencies in an engineering context as well as fundamental understanding of various aspects of gas turbine engine performance.

Component B is a group project involving the use of simulation and modelling tools will be used to expose the students to modern methodological approaches and real engineering problems. Submission of presentation slides with supporting work files and a 30 minute group presentation including Q/A.

A peer review process will be used to moderate the group work mark in accordance with Department's Group Work Policy.

The resit assessment will differ from the first sit assessment in that component B will involve an appropriately scaled individual project. A written submission on a re-sit project with supporting work files. Student does not need to give a presentation.

| First Sit Components          | Final<br>Assessment | Element<br>weighting | Description                                       |
|-------------------------------|---------------------|----------------------|---------------------------------------------------|
| Examination - Component A     | $\checkmark$        | 50 %                 | Written examination (2 hours)                     |
| Presentation - Component<br>B |                     | 50 %                 | 30 minute group presentation including Q/A.       |
| Resit Components              | Final<br>Assessment | Element<br>weighting | Description                                       |
| Examination - Component A     | ~                   | 50 %                 | Written examination (2 hours)                     |
| Report - Component B          |                     | 50 %                 | Written submission on a re-sit project (10 pages) |

|                      | Part 4: Teaching and Learning Methods                                                                                              |                |           |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Learning<br>Outcomes | On successful completion of this module students will achieve the follo                                                            | owing learning | outcomes: |
|                      | Module Learning Outcomes                                                                                                           |                | Reference |
|                      | Assess engine performance at component level by applying appropri<br>knowledge of aerodynamics and thermodynamics. (SM3b, EA2, P2) | ate            | MO1       |
|                      | Model the aero-thermo flow physics on engine components through a numerical methods. (EA3b, EA4b, P3)                              | analytical or  | MO2       |
|                      | Develop appropriate design solution at engine component level within constraints and limitations. (D3b, P4, P8)                    | n various      | MO3       |
| Contact<br>Hours     | Independent Study Hours:                                                                                                           |                |           |
|                      | Independent study/self-guided study                                                                                                | 114            |           |
|                      | Total Independent Study Hours: 114                                                                                                 |                | 14        |

# STUDENT AND ACADEMIC SERVICES

|         | Scheduled Learning and Teaching Hours:                                   |     |
|---------|--------------------------------------------------------------------------|-----|
|         | Laboratory work                                                          | 12  |
|         | Lectorials                                                               | 12  |
|         | Lectures                                                                 | 12  |
|         | Total Scheduled Learning and Teaching Hours:                             | 36  |
|         | Hours to be allocated                                                    | 150 |
|         | Allocated Hours                                                          | 150 |
| Reading | The reading list for this module can be accessed via the following link: |     |
| List    | https://uwe.rl.talis.com/index.html                                      |     |

| Part 5: Contributes Towards                                                            |
|----------------------------------------------------------------------------------------|
| This module contributes towards the following programmes of study:                     |
| Aerospace Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2020-21                    |
| Aerospace Engineering [Sep][FT][Frenchay][4yrs] MEng 2020-21                           |
| Aerospace Engineering with Pilot Studies [Sep][FT][Frenchay][3yrs] BEng (Hons) 2020-21 |
| Aerospace Engineering with Pilot Studies [Sep][FT][Frenchay][4yrs] MEng 2020-21        |