

MODULE SPECIFICATION

Part 1: Information						
Module Title	Progr	amming [TSI]				
Module Code	UFCFBW-18-0		Level	Level 3		
For implementation from	2020-21					
UWE Credit Rating	18		ECTS Credit Rating	9		
Faculty		ty of Environment & nology	Field	Computer Science and Creative Technologies		
Department	FET	FET Dept of Computer Sci & Creative Tech				
Module Type:	Stand	Standard				
Pre-requisites	None					
Excluded Combinations		None				
Co-requisites		None				
Module Entry Requirements		None				
PSRB Requirements		None				

Part 2: Description

Educational Aims: The aim of this module is to enable students to develop algorithmic thinking, learn basic concepts and programming terms, and to become acquainted with high level programming constructs and software development processes.

Outline Syllabus: The module covers the following topic areas:

Methodology and paradigms of programming,

Algorithms. Forms of algorithm representation,

Basic programming constructs,

Introduction to high level programming language (C++),

History of C++,

Composition of a high level programming language: identifiers, keywords, constants,

Composition of C++,

Program structure. Input and output,

Basic data types. Variables and expressions,

Introduction to the programming environment,

Operations. Math functions,

Branching. Conditional and unconditional jumps, multiple choice operators,

STUDENT AND ACADEMIC SERVICES

Loop operators,

Memory addressing and pointers,

Data structures - arrays. Single and multidimensional arrays,

Basic algorithms for working with arrays,

Work with string data,

User defined functions and types,

Working with files,

Standard Template Library (STL),

Teaching and Learning Methods: Learning and teaching will be provided to students in two forms: lectures, practical classes and labs. During lectures, theoretical aspects of the course will be provided to students by the teaching staff. Lectures will be supported by presentation published and available to the students on e.tsi.lv under the module section. Also, additional materials, like code examples, text books, publications on the internet, videos etc will be presented in e.tsi.lv.

During labs, each student receives an individual task to perform.

During practical classes detailed discussion about specific algorithms is conducted & and algorithms work demonstration is done by the teaching staff.

C++ is studied, as an example of high-level programming language. In addition to learning activities during taught sessions, students are expected to spend time outside of class on independent learning activities. These might include completing assignment tasks, independent reading, practising new skills on personal projects and watching informative videos, completing self-assessment test etc.

Part 3: Assessment

This module assessment is split into two components (A – Exam, B – Labs):

The practical assignment component should be completed individually (i.e. this is not group work) and represents 50% of your final module mark. The practical assignment has 11 elements,.

A - final 2-hour examination which will assess the students understanding of taught material that forms part of the learning outcomes but cannot easily be assessed through practical tasks. This component represents 50% of final module mark.

B – series of 11 practical tasks (labs), exploring basic principles of programming using C++ programming language, which should be completed by the students. An application and its source code should be provided to the teaching staff.

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A	✓	50 %	Examination (2 hours)
Portfolio - Component B Resit Components	Final Assessment	50 % Element weighting	series of 11 practical tasks (labs), exploring basic principles of programming using C++ programming language, which should be completed by the students. An application and its source code should be provided to the teaching staff. Description
Examination - Component A		50 %	Examination (2 hours)
Portfolio - Component B		50 %	series of 11 practical tasks (labs), exploring basic principles of programming using C++ programming language, which should be completed by the

	students. An application and its source code should
	be provided to the teaching staff.

	Part 4: Teaching and Learning Methods					
_earning Outcomes	On successful completion of this module students will achieve the following	wing learning	outcomes:			
	Module Learning Outcomes		Reference			
	Apply basic principles of algorithmization					
	Use basic notations and methods in programming					
	Apply basic data structures					
	Use high level programming language (as example C++) to complete programming of algorithms					
	Understand the development stages of a program					
	Decompose programming tasks into smaller logical parts and creation of algorithms that implement subtasks					
	Implement algorithms and data processing methods using high level planguage	orogramming	MO7			
	Use of C++ operators		MO8 MO9			
	Use development environments and debuggers for program development and testing					
Contact Hours	Independent Study Hours: Independent study/self-guided study Total Independent Study Hours:	96 96				
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning	6	4			
	Total Scheduled Learning and Teaching Hours:	64	4			
	Hours to be allocated	18	30			
	Allocated Hours 160					
Reading List	The reading list for this module can be accessed via the following link:					
	https://rl.talis.com/3/uwe/lists/565B2E25-6B07-C0C8-483D-7D527B92lgb&login=1	F01F.html?lan	g=en-			

Part 5: Contributes Tov	wards
-------------------------	-------

This module contributes towards the following programmes of study:

STUDENT AND ACADEMIC SERVICES

Computer Science and Software Development [Oct][FT][TSI][4yrs] BSc (Hons) 2020-21

Computer Science and Software Development [Oct][PT][TSI][5yrs] BSc (Hons) 2020-21 BSc (Hons) 2020-21

Computer Science and Software Development [Feb][FT][TSI][4yrs] BSc (Hons) 2020-21

Computer Science and Software Development [Feb][PT][TSI][5yrs] BSc (Hons) 2020-21 BSc (Hons) 2020-21