

MODULE SPECIFICATION

Part 1: Information								
Module Title	Vehicle Dynamics							
Module Code	UFMFVS-15-3		Level	Level 6				
For implementation from	2022-	-23						
UWE Credit Rating	15		ECTS Credit Rating	7.5				
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics				
Department	FET [T Dept of Engineering Design & Mathematics						
Module Type:	Stand	Standard						
Pre-requisites		Dynamics 2021-22						
Excluded Combinations		None						
Co-requisites		None						
Module Entry Requirements		None						
PSRB Requirements		None						

Part 2: Description

Overview: A fundamental aspect of Automotive Engineering, this module starts by reviewing Single Degree of Freedom and Multiple Degree of Freedom (MDOF) vibrations, enhanced by looking at forced MDOF systems, using the quarter car model as a basis. The focus then shifts to the specifics of automotive chassis design and dynamics, discussing SAE coordinate systems, forces and loads on a vehicle, tyres, cornering (steady-state, low and high speed), springs and dampers and suspension types and parameters.

Educational Aims: On successful completion of this module, students will be in a position to apply advanced methods of engineering analysis to a range of complex problems that occur in an automotive engineering context.

Outline Syllabus: Review of SDOF and MDOF vibration (underpinned by mathematical topics of differential equations, eigenvalue and eigenvectors, matrix algebra and manipulation),

Forced MDOF (modal analysis, underpinned by mathematics of matrices),

Vehicle coordinate systems, forces and loads on a vehicle,

Tyres,

Steady-state cornering - low and high speed,

Springs and Dampers,

Suspension types and parameters.

Teaching and Learning Methods: This module will continue the delivery approach of dynamics modules covered at levels 4 and 5 and adopts a flipped delivery supported by recorded and online materials to encourage active learning.

Whole cohort teaching sessions are structured and focused on delivering active learning, based on students having conducted a wide range of pre-study activities. This is followed by structured, problem-focussed, tutorial sessions in TEAL spaces (smaller groups), making effective use of technology and engendering peer-learning and tutor facilitation in ad-hoc groups.

Facilitated sessions make extensive of simulation software to visualise and elucidate solutions, and provide methods and approaches to solve complex problems where hand calculations are tedious and/or problematic.

Study time outside of contact hours will be spent on working through pre-study (i.e. new) material (via notes and videos), exercises and example problems. The learning on the module is strongly supported by the use of technology and students are encouraged to engage in this material both prior to and after class contact sessions.

Part 3: Assessment

The principal method of assessment is through an examination delivered as Component A with a small element of assessment introduced in Component B to support the flipped class delivery strategy.

Component A

The interactive style of delivery leads to students receiving frequent formative feedback on their progress and hence students should be prepared to do the end of module assessment which takes the form of a 3 hour partially scenario-based end of semester examination. Questions in exam focus on a mix of technical competency, analysis of real-world applications of content, and questions focussed on understanding, interpretation and practical applications of analysis of vehicle dynamics.

Component B

E-quizzes taken in each week are an additional means of ensuring engagement in delivery process and although summative, feeding into the module mark, also provide a formative feedback to students as a measure of understanding.

The resit assessment has the same profile as the first sit

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A	*	80 %	End of module examination, assessing technical procedure, scenario-based investigation and fundamental vehicle dynamics knowledge (3 hours).
Online Assignment - Component B		20 %	e-quizzes
Resit Components	Final Assessment	Element weighting	Description
Examination - Component A	✓	80 %	Exam (3 hours)

STUDENT AND ACADEMIC SERVICES

Online Assignment -	20.9/	e-assessment
Component B	20 %	

Part 4: Teaching and Learning Methods								
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:							
	Module Learning Outcomes	Reference						
	Apply and implement knowledge of scientific and mathematical principles and methods necessary in the dynamics of vibrations, enabling appreciation of engineering context and the real-world application to vehicle dynamics. (SM1b, SM2b, EA1b, P8)							
	Select and apply mathematical methods, tools and notations proficiently in the analysis and solution of vibrational problems in the context of automotive chassis dynamics. (EA2, G1)							
	Apply and integrate knowledge of other engineering disciplines to su study of vehicle dynamics involving complex systems. (SM3b)	pport the	MO3					
	Critically evaluate the performance of automotive chassis systems ar components through the use of analytical, quantitative and qualitative and modelling techniques. (EA3b, P8, G1)	MO4						
Contact Hours	Independent Study Hours:							
	Independent study/self-guided study	11	114					
	Total Independent Study Hours:	4						
	Scheduled Learning and Teaching Hours:							
	Face-to-face learning	30	6					
	Total Scheduled Learning and Teaching Hours: 3		6					
	Hours to be allocated	150						
	Allocated Hours	0						
Reading List	The reading list for this module can be accessed via the following link: http://www1.uwe.ac.uk/its/itresources/software/softwareoncampus.asp)X						

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mechanical Engineering MEng 2020-21