

MODULE SPECIFICATION

Part 1: Information						
Module Title	Advanced Heat Transfer					
Module Code	UFMF7T-15-3		Level	Level 6		
For implementation from	2022-23					
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty		ty of Environment & nology	Field	Engineering, Design and Mathematics		
Department	FET [FET Dept of Engineering Design & Mathematics				
Module Type:	Stand	Standard				
Pre-requisites Applied Thermo		Applied Thermofluids	uids 2021-22			
Excluded Combinations		None				
Co-requisites		None				
Module Entry Requirements		None				
PSRB Requirements		None				

Part 2: Description

Overview: Building on previous Thermofluids work this module will enable students to understand the importance of heat transfer when analysing energy consumption in complex systems.

Fundamental phenomena will be explored both theoretically and through a range of experimental work.

Incorporating a section on thermography the potential of this non-destructive testing technique will be explored using industry standard equipment and software.

Educational Aims: To develop a detailed understanding of real world heat transfer applications. The module will include an introduction to the use of industry standard thermography equipment.

Outline Syllabus: Introduction to Thermography 1-D Heat Transfer in pipes, slabs and cylinders Forced Convection Heat Exchangers Natural Convection Steady State Conduction in 2/3 Dimensions Extended Surfaces Transient Heat Transfer Radiation

Teaching and Learning Methods: Interactive lectures using formative feedback. Hands-on laboratory experiments and computer modelling designed to promote self-learning Self paced peer assisted work groups

Part 3: Assessment

The exam will be based on a strategy that will ensure that students are able to demonstrate and apply their knowledge and understanding through engagement with problems and scenarios encountered throughout the module.

Specifically questions will be based on data obtained from experiments conducted independently in laboratory work throughout the module alongside some traditional questions.

Small amount of marks are allocated for the data collection. Students who have not collected will have data provided to them in the examination assessment.

Resit assessment strategy is a written examination

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A Resit Components	√ Final Assessment	100 % Element weighting	Via controlled conditions using group data obtained from experiments conducted independently throughout the Semester alongside some traditional questions. Open book exam to demonstrate ability to understand, analyse and apply knowledge and think critically (3 hours). Description
		5	
Examination - Component A	~	100 %	Via controlled conditions using group data obtained from experiments conducted independently throughout the Semester alongside some traditional questions. Open book exam to demonstrate ability to understand, analyse and apply knowledge and think critically (3 hours).

Part 4: Teaching and Learning Methods					
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:				
	Module Learning Outcomes				
	Acquire the ability to apply and integrate thermographical knowledge, whilst understanding its limitations, to heat transfer applications (SM3m)	MO1			
	Develop an understanding of the thermal characteristics of materials and their impact on heat transfer processes (P2)	MO2			

STUDENT AND ACADEMIC SERVICES

	Demonstrate the ability to apply different quantitative and computatio to complex heat transfer problems and understand the limitations and the solution (EA3m) Be able to work with information that may be incomplete or uncertain quantify the effect of this on the application. Where appropriate use h theory or experimental research to mitigate deficiencies (D3m)	and to	лО3 ЛО4			
	Apply advanced heat transfer knowledge to engineering processes (E	EA1m) N	AO5			
Contact Hours	Scheduled Learning and Teaching Hours:					
	Laboratory work	8				
	Lectorials	24				
	Tutorials	12				
	Total Scheduled Learning and Teaching Hours:	44				
	Hours to be allocated	150	150			
	Allocated Hours	44				
Reading List	The reading list for this module can be accessed via the following link: https://rl.talis.com/3/uwe/lists/AADEF5FB-C74D-47C5-7D5E-F571D16 GB&login=1		j=en-			

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mechanical Engineering MEng 2020-21