STUDENT AND ACADEMIC SERVICES

MODULE SPECIFICATION

Part 1: Information						
Module Title	Thermofluids					
Module Code	UFMFNS-15-1		Level	Level 4		
For implementation from	2020-21					
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET Dept of Engineering Design & Mathematics					
Module Type:	Standard					
Pre-requisites		None				
Excluded Combinations		None				
Co-requisites		None				
Module Entry Requirements		None				
PSRB Requirements		None				

Part 2: Description

Overview: The principles governing the flow of fluids and fluid dynamics are an essential part of an engineer's knowledge base, enabling them to design, solve and maintain a variety of problems that occur throughout engineering such as the design of efficient pumping systems, processing plant and heat exchange technologies.

The approach taken is to make sure that theory is underpinned by experiment and observation so that students can properly understand the mechanisms at work. The module is designed to provide a solid foundation of knowledge, with practical exercises that reinforce and will enable the extension to specialist knowledge in future years.

Educational Aims: Aim of this module is to introduce thermodynamics, heat transfer and fluid dynamics which underpin fundamental scientific methods and engineering applications.

Outline Syllabus: First Law of Thermodynamics Systems, Energy, Processes, Properties and Thermodynamic Property Relationships Non-Flow Energy Equation (NFEE) Gas Laws Non-flow Vapour Processes and Cycles Basic Heat Transfer Hydrostatics and Buoyancy Dimensional Analysis Incompressible flow

Teaching and Learning Methods: Teaching and learning methods will involve interactive lectures with formative feedback, hands-on laboratory experiments designed to promote self-learning and self-paced peer assisted work groups

Part 3: Assessment

The examination will be designed to ensure that students are able to demonstrate and apply their knowledge and understanding through engagement with problems and scenarios encountered throughout the module.

Specifically, questions will be based on experimental data alongside some traditional questions.

the resit assessment strategy is a written examination

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	100 %	Online Open book examination via controlled conditions using data obtained from experiments conducted independently throughout the Semester alongside some traditional questions
Resit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	\checkmark	100 %	Online Open book examination via controlled conditions using data provided alongside some traditional questions

Part 4: Teaching and Learning Methods					
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:		
	Module Learning Outcomes		Reference		
	Describe and explain thermofluid principles and the associated methonecessary to underpin, and enable appreciation of, relevant enginee applications (SM1b)	odology ring	MO1		
	Apply practical and laboratory skills relevant to thermofluid processes (P3) MO2		MO2		
	Demonstrate the ability to work with experimental technical uncertain laboratory environment (P8)	ty in a	MO3		
Contact Hours	Independent Study Hours:				
	Independent study/self-guided study	10	8		
	Total Independent Study Hours:	10	18		

STUDENT AND ACADEMIC SERVICES

	Scheduled Learning and Teaching Hours:	
	Laboratory work	6
	Lectorials	24
	Tutorials	12
	Total Scheduled Learning and Teaching Hours:	42
	Hours to be allocated	150
	Allocated Hours	150
Reading List	The reading list for this module can be accessed via the following link:	

Part 5: Contributes Towards
This module contributes towards the following programmes of study:
Mechanical Engineering MEng 2020-21