

MODULE SPECIFICATION

Part 1: Information						
Module Title	Moled	cular Cell Biology				
Module Code	USSJXR-15-2		Level	Level 5		
For implementation from	2020-21					
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty		ty of Health & ed Sciences	Field			
Department	HAS	S Dept of Applied Sciences				
Module type:	Stand	Standard				
Pre-requisites		Cells, Biochemistry and Genetics 2019-20				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Overview: This module complements the optional level two modules and provides adequate foundation knowledge of key concepts, which will be vital for level three studies.

Educational Aims: The module will also equip students with essential laboratory techniques such as cell culture, key molecular techniques such as DNA isolation from mammalian cells, endpoint PCR, and DNA sequencing, followed by cutting-edge genomic analysis and their application to the study and diagnosis of disease. Also, genomic, transcriptomic and proteomic methods used to analyse and study human chromosomes and DNA, thereby, enhancing the repertoire of practical skills of UWE graduates.

Outline Syllabus: Molecular Cell Biology examines the molecular basis of genetic disease; from altered genotype to diseased phenotype.

Molecular and Cell Biology will uncover:

The nature of DNA mutations and their effects on protein structure and function

How altered protein structure and function affects cellular biology including cell signalling, metabolism and tissue homeostasis

STUDENT AND ACADEMIC SERVICES

The subsequent pathological consequences of altered cellular biology

Bioinformatics and systems biology: the computation of high volumes of biological data and the properties of a network of interacting components in a system, as well as the components themselves, including an appreciation of the algorithms to decipher biological relationships.

Teaching and Learning Methods: The module will be delivered as a series of online lectures and three in lab. practical classes with hands on experience of laboratory techniques and computational data analysis.

Part 3: Assessment

Component A – An online examination with a 24 hour window for completion, anticipated to take two hours to complete. This exam will allow students to demonstrate their understanding of the subject matter by applying course content to a different context.

Component B - An online quiz, after each in-class and online practical session, which reviews the content of each practical session and examines the students ability to recognise and perform molecular techniques and interpret the data generated. There will be a series of six online quizzes to be completed after each practical session, and they will last approximately 10 minutes each.

Formative assessment opportunities will be presented following each practical. Component B, while contributing to the summative assessment, will also be used as a feed-forward, formative assessment to aid preparation for component A.

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	✓	50 %	Online examination (24 hours)
Set Exercise - Component B		50 %	Interpretation of laboratory techniques and data (online).
Resit Components	Final Assessment	Element weighting	Description
Examination - Component A	✓	50 %	Online exam (2 hours), Assessment Period 3
Set Exercise - Component B		50 %	Interpretation of laboratory techniques and data (online)

Part 4: Teaching and Learning Methods					
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:				
	Module Learning Outcomes	Reference			
	Understand how genetic mutations change protein structure and function	MO1			
	Explain how altered protein structure and function affects cellular physiology and tissue homeostasis	MO2			
	Identify the effect of altered physiology in the pathology of disease	MO3			
	Develop their skills in data analysis and interpretation	MO4			
	Explain how molecular techniques are applied to study and diagnose pathological conditions	MO5			

STUDENT AND ACADEMIC SERVICES

Contact Hours	Independent Study Hours:				
	Independent study/self-guided study	117			
	Total Independent Study Hours:	117			
	Scheduled Learning and Teaching Hours:				
	E-learning/online learning	33			
	Total Scheduled Learning and Teaching Hours:	33			
	Hours to be allocated	150			
	Allocated Hours	150			
Reading List	The reading list for this module can be accessed via the following link:				
	https://uwe.rl.talis.com/index.html				