

MODULE SPECIFICATION

Part 1: Information								
Module Title	Introd	Introduction to Machine Vision						
Module Code	UFMFLQ-15-2		Level	Level 5				
For implementation from	2021	2021-22						
UWE Credit Rating	15		ECTS Credit Rating	7.5				
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics				
Department	FET	F Dept of Engin Design & Mathematics						
Module type:	Stand	ndard						
Pre-requisites		None						
Excluded Combinations		None						
Co- requisites		None						
Module Entry requirements		None						

Part 2: Description

Overview: Vision is a powerful sense in humans; it allows us to make sense of, to navigate through and to interact with the world about us. In our everyday life, machine vision has already become well established in many areas ranging from manufacturing, to medicine, to security. Developments in machine vision will play a key role in the realisation of future autonomous and smart devices, such as robots, to interact with us as humans, to understand and respond to our needs, i.e. human-computer interaction. This module provides an introduction to the state of the art as well as exploring future directions in machine vision. The course content is both industry- and research-led and aims to provide students with skills that meet the needs of industry.

Educational Aims: This module equips students with knowledge in machine vision concepts and applications as well as image processing techniques. It employs examples from industry and research to inform teaching and learning.

Outline Syllabus: 1Typically, the syllabus will contain the following topics:

Machine vision concepts and introduction to machine vision applications.

Image formation (e.g. pinhole camera model) and representations (e.g. binary, greyscale and colour images):

Basic image processing and analysis techniques including histogram analysis, image segmentation and morphological operations.

3D Image analysis including laser triangulation, stereo triangulation and photometric stereo

Features descriptors

Introduction to machine learning methods such as artificial neural networks and deep learning

Machine vision in Robotics such as vision based simultaneous localisation and mapping

Management appraisal

Generating machine vision code

Teaching and Learning Methods: Scheduled Learning includes a twelve pattern of 2 hour laboratory sessions supported by 1 hour lectures.

Independent learning includes hours engaged with essential reading, coding and testing, assignment completion, etc.

Part 3: Assessment

First Sit:

Component A: Group presentation where students will be required to propose suitable imaging techniques to address a given machine vision problem. With a questions and answers element.

Component B: Written Individual Project Report (100%): this is a 2000-word individual report based on selected activities undertaken during the laboratory sessions plus a project based learning style task, centred on a practice-led real-world case study problem.

Resit:

Component A: Group or individual presentation where students will be required to propose suitable imaging techniques to address a given machine vision problem. With a questions and answers element.

Component B: Written Individual Project Report (100%): this is a 2000-word individual report based on selected activities undertaken during the laboratory sessions plus a project based learning style task, centred on a practice-led real-world case study problem.

First Sit Components	Final Assessment	Element weighting	Description	
Presentation - Component A	✓	25 %	Group presentation where students will be required to propose suitable imaging techniques to address a given machine vision problem. With a questions and answers element.	
Report - Component B		75 %	Written Individual Project Report (100%): this is a 2000-word individual report based on selected activities undertaken during the laboratory sessions plus a project based learning style task, centred on a practice-led real-world case study problem.	
Resit Components	Final Assessment	Element weighting	Description	
Presentation - Component A	¥	25 %	Group or individual presentation where students will be required to propose suitable imaging techniques to address a given machine vision problem. With a questions and answers element	
Report - Component B 75 %		75 %	Written Individual Project Report (100%): this is a 2000-word individual report based on selected	

		activities undertaken during the laboratory sessions
plus a project based learning style task, ce		plus a project based learning style task, centred on a
		practice-led real-world case study problem.

Part 4: Teaching and Learning Methods									
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:								
	Module Learning Outcomes	Reference							
	Apply a range of algorithmic methods to provide imaging-based soluti problems in differing domains.	MO1							
	Explain the principles of a range of image acquisition, image processi machine learning methods.	ng and	MO2						
	Select available technologies and techniques to meet users' needs using the requirements of an application task with reference to the capabilities and limitations of current machine vision systems.								
	Implement machine vision algorithms in software and evaluate their reperformance in resolving a practical problem.	espective	MO4						
Contact Hours	ntact urs Independent Study Hours:								
	Independent study/self-guided study	114							
	Total Independent Study Hours:	114							
	Scheduled Learning and Teaching Hours:								
	Face-to-face learning	36							
	Total Scheduled Learning and Teaching Hours:	36							
	Hours to be allocated	150							
	Allocated Hours	150							
Reading List	The reading list for this module can be accessed via the following link: https://rl.talis.com/3/uwe/lists/DE7237B6-8C1B-2C54-D07F-A89CC540 GB&login=1	CC852.html?la	ang=en-						

Part 5: Contributes Towards

This module contributes towards the following programmes of study: