

MODULE SPECIFICATION

Part 1: Information							
Module Title	Reliability Engineering and Asset Management						
Module Code	UFMFPB-15-3		Level	Level 6			
For implementation from	2018-19						
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty		ty of Environment & nology	Field	Engineering, Design and Mathematics			
Department	FET	FET Dept of Engin Design & Mathematics					
Contributes towards							
Module type:	Standard						
Pre-requisites		Mathematics for Manufacturing 2018-19					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: This module will provide a professional-level working knowledge of the advanced techniques of reliability engineering and an ability to apply them to improving the maintenance, the maintainability of existing and proposed manufacturing plant in their workplace.

Outline Syllabus: The module includes:

Reliability data analysis: types and sources of reliability data, data collection, data cleansing, data accuracy and precision, model fitting, big-data, incomplete data, redundant data, not-detailed data

Applications of statistical simulation in system reliability and availability modelling

Maintenance modelling, planning, scheduling, and optimisation

Probability of failure, Cost of failure, and risk of failure in specific manufacturing systems

System's life-cycle: Life-cycle cost (LCC) analysis, identification of key cost drivers

Teaching and Learning Methods: See educational aims and assessment.

Part 3: Assessment

The main sit strategy will be as follows:

Component A: The examination is summative and assesses the students' theoretical applied knowledge and understanding of system reliability concepts, methods and techniques, and their ability to apply them in a variety of industrial scenarios.

Component B: The technical report will take into account both the professional practise demonstrated in the management of the projects and assessment of system reliability applied to a production system scenario. The technical report will take the form of a consultancy document to an industrial client proposing reliability problem mitigation for their production system.

The resit strategy will be as follows:

Component A: The examination is summative and assesses the students' theoretical applied knowledge and understanding of system reliability concepts, methods and techniques, and their ability to apply them in a variety of industrial scenarios.

Component B: Will provide the individual student with the opportunity to rework the written assignment, or where this is the first attempt a different industrial scenario shall be provided. Risk of plagiarism with Component B will be mitigated by the individualised variables and data for the industrial scenario being issues to students with the assignment brief.

First Sit Components	Final Assessment	Element weighting	Description
Report - Component B		30 %	2000 word (individual) technical report
Examination - Component A	· · ·	70 %	2 hours examination
Resit Components	Final Assessment	Element weighting	Description
Report - Component B		30 %	2000 word (individual) technical report

Part 4: Teaching and Learning Methods					
Learning Outcomes					
		Module Learning Outcomes			
	MO1	Collect and analyse manufacturing plant data to facilitate the diagnosis and elimination of reliability problems			
	MO2	Select and apply the most appropriate techniques for reliability assessment			
	MO3	Demonstrate an in-depth appreciation of the contribution of reliability and asset management techniques to competitiveness of a manufacturing enterprise			

STUDENT AND ACADEMIC SERVICES

		quality problems and apply suitabl product quality	e techniques to			
Contact Hours	Contact Hours					
	Independent Study Hours:					
	Independent study/self-guided	study	114			
	Total	Independent Study Hours:	114			
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning		36			
	Total Scheduled Lea	rning and Teaching Hours:	36			
	Hours to be allocated		150			
	Allocated Hours		150			
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/index.html					