

MODULE SPECIFICATION

Part 1: Information								
Module Title	Manufacturing Technology							
Module Code	UFMFP7-15-2		Level	Level 5				
For implementation from	2019-	20						
UWE Credit Rating	15		ECTS Credit Rating	7.5				
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics				
Department	FET [FET Dept of Engin Design & Mathematics						
Module type:	Stand	Standard						
Pre-requisites		Design, Materials and Manufacturing 2019-20						
Excluded Combinations		None						
Co- requisites		None						
Module Entry requirements		None						

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: Advanced manufacturing process, such as:

Additive Layer Manufacture (ALM), Waterjet cutting/ profiling, Nano and micro machining, and Laser machining.

Modern methods to inspect precision machined engineering components:

Technologies and tools Uncertainties in measurement

Computer Numerical Control (CNC):

Machine tool layout and construction, and Manual part programming.

Computer Aided Manufacture (CAM):

STUDENT AND ACADEMIC SERVICES

Application,

Manufacturing feature recognition, and Industrial software.

Fixed and Flexible automation:

Configurations, End effectors,

Drive systems,

Programming methods and,

Basic industrial applications.

Teaching and Learning Methods: Students will be exposed to up to date applications from manufacturing industries, to ensure that they have full appreciation and understanding of modern manufacturing technologies.

Part 3: Assessment

The main sit strategy will be as follows:

Component A: The examination is summative and assesses the students' understanding of concepts, manufacturing methods and techniques, and their ability to apply them to a variety of industrial scenarios.

Component B: The DEWIS test is intended to encourage early engagement with the module and to provide timely feedback to help identify strengths and weaknesses related to knowledge of manufacturing processes. The written report is structured to verify students' competence and demonstrate understanding of a range of manufacturing technologies and computer numerical controlled (CNC) systems. Requiring the students to demonstrate an ability to apply this knowledge in a realistic and representative format for a production engineer producing a component on a CNC lathe.

The resit strategy will be as follows:

Component A: The examination assesses the students' understanding of concepts, manufacturing methods and techniques, and their ability to apply them to a variety of industrial scenarios.

Component B: The written report is structured to verify students' competence and demonstrate understanding of a range of manufacturing technologies and computer numerical controlled systems. Requiring the students to demonstrate an ability to apply this knowledge in a realistic and representative format for a production engineer producing a component on a CNC lathe. In addition the student will be required to select pre and post processing manufacturing technologies for a given component. Risk of plagiarism will be mitigated by the individualised variables and data being issues to students with the assignment brief.

First Sit Components	Final Assessment	Element weighting	Description
Report - Component B		40 %	2000 word individual report and cnc program
In-class test - Component B		10 %	Dewis test
Examination - Component A	✓	50 %	2 hour examination
Resit Components	Final Assessment	Element weighting	Description
Report - Component B		50 %	2000 word individual report and cnc program
Examination - Component A	✓	50 %	2 hour examination

Part 4: Teaching and Learning Methods								
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:							
	Module Learning Outcomes	Reference						
	Explain and apply the principles of a range of modern manufacturing	MO1						
	Comparatively analyse and evaluate the benefits of modern manufacture processes and discuss their limitations.	MO2						
	Evaluate, critically analyse manufacturing processes to maximise val equipment/manpower utilization	MO3						
	Evaluate design, automation and metrology in modern manufacturing	MO4 MO5						
	Demonstrate the application of advanced CAM to undertake 3-axis CNC machining operations.							
Contact Hours	Independent Study Hours:							
	Independent study/self-guided study	.4						
	Total Independent Study Hours:	11	4					
	Scheduled Learning and Teaching Hours:							
	Face-to-face learning	36						
	Total Scheduled Learning and Teaching Hours:	6						
	Hours to be allocated	60						
	Allocated Hours	60						
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/index.html							

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mechanical Engineering with Manufacturing {Apprenticeship} [Sep][PT][Frenchay][4yrs] BEng (Hons) 2018-19 Mechanical Engineering with Manufacturing [Sep][PT][Frenchay][4yrs] BEng (Hons) 2018-19 Mechanical Engineering with Manufacturing {Apprenticeship} [Sep][PT][UCW][4yrs] BEng (Hons) 2018-19 Mechanical Engineering with Manufacturing {Apprenticeship} [Sep][PT][COBC][4yrs] BEng (Hons) 2018-19 Mechanical Engineering with Manufacturing {Apprenticeship} [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19