

MODULE SPECIFICATION

Part 1: Information							
Module Title	Mathe	Mathematics for Manufacturing					
Module Code	UFMFG8-15-2		Level	Level 5			
For implementation from	2019-	2019-20					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET	Dept of Engin Design & Mathematics					
Module type:	Stand	dard					
Pre-requisites		Engineering Mathematics 2019-20					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: The module is designed to familiarise students with, extend their knowledge of, and provide a solid foundation of mathematical and statistical techniques required later in the course. In particular students will develop understanding of the principles and use of statistical process control techniques, process capability methods.

Outline Syllabus: The syllabus includes:

Capability Analysis Pareto chart and Gauge Study Numerical Methods for solving Partial Differential Equations (PDEs)

Teaching and Learning Methods: See Educational Aims and Learning Outcomes.

Part 3: Assessment

In the first sit, the statistics elements of this module will be assessed at the end of the module through a written assignment based on an engineering problem in industry and a PC lab based examination based on appropriate statistical software. These assessments will take into account both the professional application and practice demonstrated in the management of the project. The mathematics elements of the module will be assessed using an in-class test and will be based on questions that students have seen previously in formative tests.

The resit will comprise a single assignment based on a problem from industry; students will be required to use statistical software to: select appropriate statistical methods, generate and analyse data, identify and propose process improvements and reflect on their approach. Learning outcomes from both elements of component B are incorporated in this single assessment.

First Sit Components	Final Assessment	Element weighting	Description
Written Assignment - Component B		56 %	Written assignment (3000 words)
In-class test - Component A		25 %	Electronic in-class test (1 hour)
Examination - Component B	\checkmark	19 %	PC lab based exam (2 hours)
Resit Components	Final Assessment	Element weighting	Description
Written Assignment - Component B	~	75 %	Written assignment (4000 words)
Examination - Component A		25 %	Electronic examination (1 hour)

Part 4: Teaching and Learning Methods							
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:						
	Module Learning Outcomes						
	Use software to carryout statistical analysis and provide in context interpretation						
	Define the fundamental concepts of statistical process control, and p capability in detail	rocess	MO2				
	Define the fundamental concepts of Design of Experiments, and ana variance using statistical software	lysis of	MO3				
	Evaluate and apply the use of basic statistical analysis and their work-place application						
	Formulate finite-difference schemes for certain ordinary or partial differential equations and use an appropriate numerical method to solve associated systems of linear equations						
	Provide valid interpretations of mathematical concepts and solutions mathematical or physical context	in a given	MO6				
Contact Hours	Independent Study Hours:						
	Independent study/self-guided study 114						

	Total Independent Study Hours: Scheduled Learning and Teaching Hours:	114
	Face-to-face learning	36
	Total Scheduled Learning and Teaching Hours:	36
	Hours to be allocated	150
	Allocated Hours	150
Reading List	The reading list for this module can be accessed via the following link:	
	https://uwe.rl.talis.com/index.html	

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mechanical Engineering with Manufacturing {Apprenticeship} [Sep][PT][Frenchay][4yrs] BEng (Hons) 2018-19 Mechanical Engineering with Manufacturing [Sep][PT][Frenchay][4yrs] BEng (Hons) 2018-19 Mechanical Engineering with Manufacturing {Apprenticeship} [Sep][PT][UCW][4yrs] BEng (Hons) 2018-19 Mechanical Engineering with Manufacturing {Apprenticeship} [Sep][PT][COBC][4yrs] BEng (Hons) 2018-19 Mechanical Engineering with Manufacturing {Apprenticeship} [Sep][PT][Frenchay][3yrs] BEng (Hons) 2018-19