

MODULE SPECIFICATION

Part 1: Information								
Module Title	Therr	Thermoflduid Systems and Computational Flow Dynamics						
Module Code	UFMFAQ-30-3		Level	Level 6				
For implementation from	2019	2019-20						
UWE Credit Rating	30		ECTS Credit Rating	15				
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics				
Department	FET I	Dept of Engin Design & Mathematics						
Module type:	Stand	andard						
Pre-requisites		None						
Excluded Combinations		None						
Co- requisites		None						
Module Entry requirements		None						

Part 2: Description

Overview: The Thermofluid Systems and Computational Flow Dynamics module focusses on thermofluid systems, the types and designs of typical plant found in nuclear industries, such as fans, compressors and HVAC systems. Key areas for study are understanding fluid flow theory and applying CFD modelling.

Educational Aims: Learners will develop the theoretical understanding of fluid flow principles, by investigating hot and cold fluids in fluid flow machines. Learners will study Computational Flow Dynamics (CFD) theory and carry out CFD modelling, which would be used in industry.

Outline Syllabus: The topics covered in this unit are:

Thermofluids: Compressible flow machines design (fans, compressors) Compressible flow machines (pumps) Refrigeration and heat pumps Air conditioning, mixing of air-streams and psychrometry HVAC systems, combined heat and power (CHP), energy recovery.

CFD: CFD theory and applications CFD modelling software Laminar and turbulent flow conditions Modelling with Hex geometries Mesh and mesh characteristics Boundary flow conditions Navier-Stokes flow transport equations

Teaching and Learning Methods: See Outline Syllabus and Assessment.

Part 3: Assessment

Component A – Data Interpretation: Analysing a Case Study – The learner will be given a set of fluids data as a case study and will be asked to perform flow analysis calculations, for example viscosity and flow velocity vectors in a constricted pipe.

Component B - CFD Model – The learners will create a CFD model of fluid flow in a section of nuclear plant and present their results, along with explanations of operating principles, energy use and design of fluid machinery in presentation slides.

The resit assessment tasks for this module will involve a rework and reflective evaluation of the work carried out in the original task.

First Sit Components	Final Assessment	Element weighting	Description
Set Exercise - Component B		45 %	Presentation slides
Practical Skills Assessment - Component B		30 %	CFD model
Case Study - Component A	✓	25 %	Data interpretation - analysing a case study
Resit Components	Final Assessment	Element weighting	Description
Set Exercise - Component B		45 %	Presentation slides
Practical Skills Assessment - Component B		30 %	CFD model
Case Study - Component A	✓	25 %	Data interpretation - analysing a case study

Learning Outcomes	On successful completion of this module students will achieve the follow	ving learning outcomes:						
	Module Learning Outcomes	Reference						
	Conduct thermofluid and flow analysis calculations	MO1						
	Explain and analyse the operating principles of HVAC and fluid machinery MO2							
	Explain and evaluate energy use, design and cost drivers of fluid machinery MO3							
	Design and create computational fluid dynamics (CFD) models							
Contact Hours	Independent Study Hours:							
	Independent study/self-guided study	228						
	Total Independent Study Hours:	228						
	Scheduled Learning and Teaching Hours:							
	Face-to-face learning	72						
	Total Scheduled Learning and Teaching Hours:	72						
	Hours to be allocated	300						
	Allocated Hours	300						
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/index.html							

Part 4: Teaching and Learning Methods

Part 5: Contributes Towards

This module contributes towards the following programmes of study: