

MODULE SPECIFICATION

Part 1: Information							
Module Title	Thermoflduid Systems and Computational Flow Dynamics						
Module Code	UFMFAQ-30-3	Level	Level 6				
For implementation from	2018-19	2018-19					
UWE Credit Rating	30	ECTS Credit Rating	15				
Faculty	Faculty of Environment & Technology	Field	Engineering, Design and Mathematics				
Department	FET Dept of Engin Design & Mathematics						
Contributes towards							
Module type:	Standard						
Pre-requisites	None	None					
Excluded Combinations	None	None					
Co- requisites	None	None					
Module Entry requireme	nts None	None					

Part 2: Description

Overview: The Thermofluid Systems and Computational Flow Dynamics module focusses on thermofluid systems, the types and designs of typical plant found in nuclear industries, such as fans, compressors and HVAC systems. Key areas for study are understanding fluid flow theory and applying CFD modelling.

Educational Aims: Learners will develop the theoretical understanding of fluid flow principles, by investigating hot and cold fluids in fluid flow machines. Learners will study Computational Flow Dynamics (CFD) theory and carry out CFD modelling, which would be used in industry.

Outline Syllabus: The topics covered in this unit are:

Thermofluids:

Compressible flow machines design (fans, compressors)

Compressible flow machines (pumps)

Refrigeration and heat pumps

Air conditioning, mixing of air-streams and psychrometry

HVAC systems, combined heat and power (CHP), energy recovery.

STUDENT AND ACADEMIC SERVICES

CFD:

CFD theory and applications
CFD modelling software
Laminar and turbulent flow conditions
Modelling with Hex geometries
Mesh and mesh characteristics
Boundary flow conditions
Navier-Stokes flow transport equations

Teaching and Learning Methods: See Outline Syllabus and Assessment.

Part 3: Assessment

Component A — Data Interpretation: Analysing a Case Study — The learner will be given a set of fluids data as a case study and will be asked to perform flow analysis calculations, for example viscosity and flow velocity vectors in a constricted pipe.

Component B – CFD Model – The learners will create a CFD model of fluid flow in a section of nuclear plant and present their results, along with explanations of operating principles, energy use and design of fluid machinery in presentation slides.

The resit assessment tasks for this module will involve a rework and reflective evaluation of the work carried out in the original task.

First Sit Components	Final Assessment	Element weighting	Description
Set Exercise - Component B		45 %	Presentation slides
Practical Skills Assessment - Component B		30 %	CFD model
Case Study - Component A	✓	25 %	Data interpretation - analysing a case study
Resit Components	Final Assessment	Element weighting	Description
Set Exercise - Component B		45 %	Presentation slides
Practical Skills Assessment - Component B		30 %	CFD model
Case Study - Component A	✓	25 %	Data interpretation - analysing a case study

STUDENT AND ACADEMIC SERVICES

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will be able to:					
	MO1	is calculations				
	MO2	Explain and analyse the operating principles of HVAC and fluid machinery				
	MO3	Explain and evaluate energy use, design and cost drivers of fluid machinery				
	MO4	Design and create computational flui	d dynamics (CFD) models			
Contact Hours	Contact Hours					
		- <u>-</u>				
	Independent Study Hours:					
	Independent study/self	228				
		Total Independent Study Hours:	228			
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning	72				
	Total Sched	72				
	Hours to be allocated		300			
	Allocated Hours	300				
Reading List	The reading list for this module can be accessed via the following link:					
List	https://uwe.rl.talis.com/index.html					