

MODULE SPECIFICATION

Part 1: Information							
Module Title	Stress Analysis, Materials and Finite Element Analysis						
Module Code	UFMF9Q-30-3		Level	Level 6			
For implementation from	2019-20						
UWE Credit Rating	30		ECTS Credit Rating	15			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [FET Dept of Engin Design & Mathematics					
Module type:	Standard						
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements None		None					

Part 2: Description

Overview: The Stress Analysis, Materials, and Finite Element Analysis module focusses on advanced stress concepts, such as curved beams, deflections and un-symmetric bending and material stress and fatigue. Key areas for study are understanding stress theory and how to apply FEA theory to practical modelling techniques.

Educational Aims: Learners will develop the theoretical understanding of advanced stress concepts and material stress, alongside Finite Element Analysis (FEA) to enable the learner to apply stress concepts to carry out modelling, which would be used in industry.

Outline Syllabus: The topics covered in this unit are:

Stress:

Stress Concentration Un-symmetric bending

Curved beams

Elementary elastic plastic analysis

Buckling of struts

Beams deflections

Mohr's Circle for stress and strain

Rosette analysis

STUDENT AND ACADEMIC SERVICES

Failure criteria for ductile and brittle materials

Materials:

Introduction to Design Codes and Standards

Energy Methods in Structural Analysis

Impact

Fatigue Analysis

Fracture Mechanics

Introduction to Creep and Plastic Stress Analysis

Finite Element Analysis:

Introduction to FEA theory, technique and applications

Practical modelling techniques

Elementary elastic plastic analysis.

Teaching and Learning Methods: See Outline Syllabus and Assessment.

Part 3: Assessment

Component A – Data Interpretation: Analysing a Case Study – The learner will be given a set of stress data as a case study and will be asked to perform stress analysis calculations.

Component B – FEA Model Design – The learners will design an FEA model of stress in a section of nuclear plant and present their results, along with material stress analysis results and material properties evaluation in presentation slides.

The resit assessment tasks for this module will involve a rework and reflective evaluation of the work carried out in the original task.

First Sit Components	Final	Element	Description
	Assessment	weighting	
Set Exercise - Component B		45 %	Presentation slides
Practical Skills Assessment - Component B		30 %	FEA model design
Case Study - Component A	✓	25 %	Data interpretation - case study
Resit Components	Final Assessment	Element weighting	Description
Set Exercise - Component B		45 %	Presentation slides
Practical Skills Assessment - Component B		30 %	FEA model design
Case Study - Component A	✓	25 %	Data interpretation - case study

STUDENT AND ACADEMIC SERVICES

Part 4: Teaching and Learning Methods					
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning outcomes:			
	Module Learning Outcomes				
	Conduct stress and dynamics analysis calculations				
	Analyse stress in real engineering scenarios				
	Evaluate the design and properties of materials under load				
	Design and create stress models using FEA	MO4			
Contact Hours	Independent Study Hours:				
	Independent study/self-guided study	228			
	Total Independent Study Hours:	228			
	Scheduled Learning and Teaching Hours:				
	Face-to-face learning	72			
	Total Scheduled Learning and Teaching Hours:	72			
	Hours to be allocated	300			
	Allocated Hours	300			
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/index.html				

Part 5: Contributes Towards	
This module contributes towards the following programmes of study:	