

MODULE SPECIFICATION

Part 1: Information							
Module Title	Heat Transfer and Power						
Module Code	UFMFXP-30-2		Level	Level 5			
For implementation from	2019-	20					
UWE Credit Rating	30		ECTS Credit Rating	15			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [T Dept of Engin Design & Mathematics					
Module type:	Stand	tandard					
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: The Heat Transfer and Power module introduces the principles of heat transfer and power, develop commercial awareness and review the methods of power generation. The key topics are the modes of heat transfer and how they are used to generate power.

Educational Aims: Learners will develop the theoretical understanding of heat transfer and entropy, and how this is applied in heat exchangers and power generation. Learners will develop the theoretical understanding and some professional behaviours needed to generate power utilising different sources of energy.

Outline Syllabus: The topics covered in this unit are:

Heat Transfer:

Heat transfer theory: conduction, convection and radiation

Conduction for simple geometries. Numerical methods for complex geometries

Forced convection: boundary layers and heat transfer coefficients

Natural convection

STUDENT AND ACADEMIC SERVICES

Heat exchangers: surface area, outlet temperature, pressure loss calculations

Radiation. Kirchoff's law and view factor calculation, black body radiation

Extended surface

Unsteady heat transfer

Power Generation:

Generation methods and evaluation of climate impact, carbon reduction, embedded energy, life cycle costing

Entropy concept and calculations: work and heat transfer. Isentropic efficiency

Efficiency and performance of IC engines, gas turbines and steam power plant

Combustion chemistry and system performance improvements using data

Compressible flows: nozzles, orifices, friction

In this module the following mathematical topics will be introduced and developed:

Fourier Series

Fourier Transform

Teaching and Learning Methods: See Assessment

Part 3: Assessment

Component A – Written examination; 90 minute exam. The examination will assess the students' knowledge and skills of heat transfer and principles of heat exchangers through mathematical analysis. It will assess the students' knowledge and understanding of the methods of power generation and the concepts of entropy.

Component B – Group Presentation and Written Report – The learners will conduct a scoping and feasibility study on planned improvements to piece of workshop equipment within the heat transfer and power context. The presentation will discuss the scope of the project and the individual written component will support this discussion and include an explanation of heat transfer and power generation principles. The group presentation will be in subject discipline.

The resit assessment tasks for this module will involve a reworked design report including an additional 500 words of critical reflection on the original submission (B1) and a rework of their individual contribution to the group presentation (B2).

First Sit Components	Final Assessment	Element weighting	Description
Written Assignment - Component B		30 %	Written Report (1500 words)
Presentation - Component B		45 %	Group Presentation
Examination - Component A	✓	25 %	Written Exam (90 minutes)

STUDENT AND ACADEMIC SERVICES

Resit Components	Final Assessment	Element weighting	Description
Written Assignment - Component B		30 %	Written Report (2000 words)
Presentation - Component B		45 %	Individual Presentation
Examination - Component A	√	25 %	Written Exam (90 minutes)

Part 4: Teaching and Learning Methods							
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:						
	Module Learning Outcomes Reference						
	Conduct mathematical analysis on heat exchange and experimental da						
	Analyse the principles of heat transfer and power generation.	MO2					
	Evaluate the environmental sustainability of power generation.	MO3					
	Evaluate cost drivers, risks and health and safety in power generation.	MO4					
	,						
Contact Hours	Independent Study Hours:						
	Independent study/self-guided study	228					
	Total Independent Study Hours:	228					
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	72					
	Total Scheduled Learning and Teaching Hours:	72					
	Hours to be allocated	300					
	Allocated Hours	300					
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/index.html	,					

STUDENT AND ACADEMIC SERVICES

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mechanical Engineering with Nuclear {Apprenticeship} [Sep][PT][BTC][4yrs] BEng (Hons) 2018-19 Electromechanical Engineering (Nuclear){Apprenticeship}(Sep][PT][BTC][3yrs] FdSc 2018-19